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Abstract The incubation time criterion for dynamic
fracture is applied to simulate dynamic crack propa-
gation. Being incorporated into ANSYS finite element
package, this criterion is used to simulate the classi-
cal dynamic fracture experiments of Ravi-Chandar and
Knauss on dynamic crack propagation in Homalite-
100. In these experiments a plate with a cut simulat-
ing the crack was loaded by an intense pressure pulse
applied on the faces of the cut. The load consisted of
two consequent trapezoidal pulses. This, in the exper-
imental conditions used by Ravi-Chandar and Knauss,
resulted in a crack initiation, propagation, arrest and
reinitiation. Dependence of the crack length on time
was measured in those experiments. The results for
crack propagation obtained by FEM modelling are in
agreement with experimental measurements of crack
length histories. This result shows the applicability of
the incubation time approach to describe the initia-
tion, propagation and arrest of dynamically loaded
cracks.
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1 Introduction

Studies in dynamic fracture date back to the first half
of the 20th century when the first experimental results
on fracture, caused by intensively applied loads
(Hopkinson 1901; Wallner 1938; Schardin and Struth
1939; Wells and Post 1958) and the first analytical
solutions for cracks moving with speeds comparable
to that of a Reyleigh wave (Yoffe 1951; Broberg 1960;
Atkinson and Eshelby 1968) appeared. Later, in the
1970’s and early 1980’s dynamics of fracture became
a special area of interest for experimentalists and it
was then that the main effects characterizing fracture
under high loading rates were experimentally observed
(Bradley and Kobayashi 1970; Kobayashi et al. 1974;
Dally 1979; Ravi-Chandar and Knauss 1984a, b, c,
d; Dally and Shukla 1980; Kalthoff 1986, Dally and
Barker 1988; Rosakis and Zehnder 1985). Along with
this, the majority of analytical solutions, of dynamic
fracture problems were published (Freund 1972a,b,c;
Kostrov 1966; Kostrov and Nikitin 1970; Achenbach
1974; Willis 1975; Freund 1990; Broberg 1989). The
80’s and early 90’s were the time when modern
approaches to fracture dynamics were formed.

Nowadays two main approaches to the description
of dynamic crack initiation exist. The first one, origi-
nating from the works of Freund (1972a, b, c) and later
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developed by Rosakis, is based on an assumption that
fracture criterion can be expressed as a function of the
stress intensity factor rate: Kd(t) < Kd

C(K̇(t)), with
Kd being the dynamic stress intensity factor, changing
in time, Kd

C being its critical value and dot denoting
time derivative.

This approach is able to describe some of the exper-
imentally observed phenomena of dynamic fracture,
mainly in the case of well-developed plasticity (though
still within the frame-work of small scale yielding). The
limitation of this approach is that, as shown in multiple
works (ex. Owen et al. 1998), Kd

C used in the proposed
criterion not only depends on loading rate and fractured
material properties, but is also a function of experimen-
tal geometry and loading conditions. This means that
experimentally measured Kd

C cannot be treated as a
material property and cannot be used directly to model
experiments with other geometries and loading condi-
tions.

2 Incubation time criterion

Another approach that is able to describe crack initi-
ation in dynamic conditions was formulated in Petrov
and Morozov (1994) and Morozov and Petrov (2000).
This criterion for fracture at a point x, at time t , reads
as:
1

τ

∫ t

t−τ

1

d

∫ x

x−d

σ (x∗, t∗)dx∗dt∗ ≥ σc, (1)

where τ is the microstructural time of a fracture process
(or fracture incubation time)—a parameter character-
izing the response of the material to applied dynamical
loads (i.e. τ is constant for a given material and does
not depend on problem geometry, the way a load is
applied, the shape of a load pulse or its amplitude). d

is the characteristic size of a fracture process zone and
is constant for the given material and chosen scale. σ is
normal stress at a point, changing with time, and σc is
its critical value (ultimate stress or critical tensile stress
found in quasistatic conditions).

Assuming

d = 2

π

K2
IC

σ 2
c

, (2)

where KIC is a critical stress intensity factor for mode I
loading (mode I fracture toughness), measured in quasi-
static experimental conditions, it can be shown that
within the framework of linear fracture mechanics, for

the case of fracture initiation in the tip of an existing
crack, (1) is equivalent to:

1

τ

∫ t

t−τ

KI (t
∗)dt∗ ≥ KIC. (3)

Condition (2) arises from the requirement that (1) is
equivalent to Irwin’s criterion (KI ≥ KIC), in the case
of t → ∞.

As it was shown in many previous publications,
criterion (3) can be successfully used to predict frac-
ture initiation for brittle solids (ex. Petrov et al. 2003,
Petrov and Sitnikova 2005). For slow loading rates and,
hence, times to fracture that are much bigger than τ ,
condition (3) for crack initiation gives same predictions
as Irwin’s criterion of a critical stress intensity factor.
For high loading rates and times to fracture compa-
rable with τ all the variety of effects experimentally
observed in dynamic experiments (ex. Ravi-Chandar
and Knauss 1984a; Kalthoff 1986; Dally and Barker
1988) can be obtained using (3), both qualitatively and
quantitatively (Petrov 2004). Application of condition
(3) to the description of real experiments or usage of
(3) as the critical fracture condition in finite element
numerical analysis gives a possibility of better under-
standing of the nature of fracture dynamics (ex.
Bratov et al. 2004), and even predicts new effects typi-
cal for dynamic processes (ex. Bratov and Petrov 2007).
There is also the possibility of describing other highly
transient processes on the basis of the incubation time
approach (Petrov 2004). Using this ideology one can
successfully model effects typical for electrical break-
down in insulators under high-rate pulsed voltage, cav-
itation of liquids, plasticity and phase transformations
under high rate loads, detonation, etc., that are dif-
ficult to describe within the framework of classical
approaches.

The present investigation is the very first attempt to
apply criterion (1) to describe dynamic crack propaga-
tion. The criterion (3), while able to predict dynamic
crack initiation, cannot be used to describe crack devel-
opment in dynamic conditions. The main reason for
this is that time dependency of a stress intensity factor
in the tip of a crack moving at high speeds does not
directly reflect the history of stress–strain fields in the
vicinity of a current crack tip location as discussed by
Ma and Freund (1986) and Ravi-Chandar and Knauss
(1987).
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Fig. 1 Experimental scheme used by Ravi-Chandar and Knauss
(1984a)

Though (3) is easier to use when simply describing
crack initiation, (1) was used even to assess early stages
of fracture development.

3 Classical experiments of Ravi-Chandar
and Knauss

To check the ability of the criterion (1) to describe
dynamic crack development, an attempt was made to
simulate the classical fracture dynamics experiments
reported by Ravi-Chandar and Knauss in 1984 (Ravi-
Chandar and Knauss 1984a). In these experiments a
rectangular sample with a cut simulating a crack is
loaded by applying an intense load pulse to the crack
faces. Figure 1 presents the experimental scheme and
Fig. 2 gives an approximation of the load applied to the
crack faces.

The behavior of the loaded sample is described by
the Lame equations:

ρui,tt = (λ + µ)uj,ji + µui,jj , (4)

where “,” refers to the partial derivative with respect to
time and spatial coordinates. ρ is the mass density, and
the indices i and j assume the values 1 and 2. Displace-
ments are given by uι in the directions xι, respectively.
t stands for time, λ and µ are Lame constants. Stresses
are coupled with strains by Hooke’s law:

σij = λδijuk,k + µ(ui,j + uj,i). (5)

Fig. 2 Temporal shape of pressure pulse released in experiments
by Ravi-Chandar and Knauss (1984a)

where σij represents components of the stress tensor,
δij is the Kronecker delta assuming value of 1 for i = j

and 0 otherwise. At t = 0 the sample is stress free and
velocity field is zero everywhere in the body:

σij |t=0 = u,t |t=0 = 0. (6)

The crack faces are free from tractions:

σ21|x1<0,x2=0 = 0. (7)

The load applied to the crack faces is given by:

σ22|x1<0,x2=0 = Af (t). (8)

where f (t) is given graphically in Fig. 2 and A is the
amplitude of the load. The load was created by electro-
magnetic experimental equipment. The authors create
an intense electric discharge that is passed through a flat
conductor that is inserted into the crack. This electric
discharge results in a repulsing force between the con-
ductors. This creates a pressure pulse, constant over
the cut surface and with a shape and amplitude con-
trolled by the electric flow in the conductor, which can
be easily measured.

Figure 3a and b present some of the results presented
by Ravi-Chandar and Knauss. Figure 3a gives the stress
intensity factor history for four of the experiments con-
ducted. Figure 3b gives the crack propagation histories
for the same experiments. Even though all of the experi-
ments presented were conducted under nominally iden-
tical conditions, the results shown do differ. This can be
explained by the slightly different charge accumulated
in condensers prior to discharge through a conductor,
resulting in a slightly different amplitude of electric
flow and, hence, a different amplitude of pressure cre-
ated on crack surfaces. Another possible reason for this
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Fig. 3 (a) Stress intensity factor histories for crack arrest exper-
iments (Ravi-Chandar and Knauss 1984a); (b) Crack extension
histories for crack arrest experiments (Ravi-Chandar and Knauss
1984a)

difference that the authors mention is a slight disparity
in sample geometry from experiment to experiment.

Unfortunately, in the article by Ravi-Chandar and
Knauss (1984a) there is no information about the ampli-
tude of pressure created in the presented experiments.
Also, as it can be seen from Fig. 3b, at t = 0 the initial
crack is already prestressed (KI (0) �= 0).

To check the ability of (1) to describe dynamic crack
propagation the experimental conditions of Ravi-
Chandar and Knauss (1984a) were modeled utilizing
the finite element method.

4 Finite element formulation

In order to obtain a closed mathematical description of
the dynamic fracture problem (4)–(8) is supplemented
with fracture criterion (1). Due to symmetry, we sup-
pose that the crack can propagate only along the x1

axis. When condition (1) is fulfilled somewhere along
a crack path, we suppose creation of a new surface in
that point. Time integration in (1) is performed numer-
ically using the trapezoidal rule.

The problem defined by (1) and (4)–(8) is solved
numerically utilizing the finite element method. AN-
SYS finite element package was used to implement (4)–
(8), and the fulfillment of condition (1) was checked
by an external program after each time step (ANSYS
User’s Guide 2006).

Rectangular 4-node elements were used to mesh a
body. The size of elements along the crack path was

taken to be exactly d = 2
π

K2
IC

σ 2
c

. A reason for such a

choice of element size is that d is a size that char-
acterizes fracture on a chosen scale. From this point
of view all the defects and spatial discontinuities with
sizes essentially less than d cannot be called fractures
within the framework of the scale used. Since criti-
cal stress intensity factors and ultimate stresses eval-
uated in laboratory conditions are used, then, by this,
a scale to be used is set up. If, searching for KIC and
σc, one using experiments performed on, for example,
geological or microscopic scales, one will get values
for the studied fracture parameters, different from those
acquired while testing specimens on a laboratory scale,
and, hence one will get a different value for d, giving a
characteristic size for the scale one is currently using.

Following this ideology, the size of an element used
in the FE model along the crack path is the minimal
size of a crack that we can call a “fracture”. Analo-
gously, d is the minimal increment of a crack length
that we can call “crack propagation” on a chosen scale.
In the FE model used, release of a node along the crack
path increases existing crack length by d—basic crack
propagation takes place. Such a choice of an element
size also simplifies spatial integration in (1).

Using the symmetry of the problem across the x1

axis the problem was solved only for the upper half of
the sample. Dimensions of the modeled sample were
the same as in the experiments of Ravi-Chandar and
Knauss (1984a). Figure 4a presents a mesh used in the
solution. Fig. 4b gives details on the mesh surrounding
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Fig. 4 (a) Mesh used in the FE model; (b) Mesh surrounding
the crack tip

the crack tip. The crack can propagate along the x1 axis
within the zone with the fine mesh adjacent to the crack
tip. The length of this zone is 17 mm.

A total of 18,621 nodes and 18,404 elements were
used to form the mesh. Small elements with sizes equal
to d are placed adjacent to the crack path to provide the
needed accuracy of computation. Distant elements are
larger in order to minimize the computational time and
expense.

Due to the symmetry of the problem the crack path
should follow the x1-axis. Nodes along the path are
subjected to symmetrical boundary conditions up to
the moment when the condition (1) is satisfied at a
particular node (node movements in the vertical direc-
tion are restricted). At this moment the restriction on
movement of the particular node is removed and a new
surface is created. The technique used is similar to the
node release technique.

The shape of the pressure pulse applied to the crack
faces is given by Fig. 2, and its amplitude A is alter-
nated in simulations. Material parameters typical for
Homalite-100, used in the experiments of Ravi-
Chandar and Knauss, were used in the calculations.
These parameters are presented in Table 1.

The microstructural time of the fracture process, τ ,
for Homalite-100 was found by Petrov et al. (2003)

Table 1 Properties of Homalite-100 used in numerical simula-
tions

Density, ρ, kg
m3 1,230

Young’s modulus, E, MPa 3,900
Poisson’s ratio, ν 0.35
Critical stress intensity factor, KIC , Mpa

√
m 0.48

Ultimate tensile stress, σc, MPa 48
Incubation time of fracture, τ , µs 9

from analysis of experiments by Ravi-Chandar and
Knauss (1984a). The values of the critical stress inten-
sity factor and the ultimate tensile stress gives a value
for d. It appears to be 0.1 mm for Homalite-100 on a
laboratory size scale.

The constructed model was checked for conver-
gence. Usage of smaller time steps and smaller ele-
ments does not significantly affect the computational
results. The ability of the FEM model to solve the stated
dynamic problem was also checked by comparing com-
putational results to the analytical solution for the stress
intensity factor in the tip of a crack prior to crack ini-
tiation. the analytical solution for KI temporal depen-
dence in the studied problem is given, for example,
in Petrov and Morozov (1994). The FEM computed
KI temporal dependence matches the analytical result
with a maximum disparity of not more then 5%. The
good matching between the computational and analyt-
ical result shows the applicability of the constructed
model to the investigation of the problem stated by
(4)–(8). Figure 5 gives a comparison between the exper-
imental data of Ravi-Chandar and Knauss (1984a) for
stress intensity factor at crack initiation for different
times-to-fracture (i.e. different amplitudes of applied
load pulse), and the analytical solution using criterion
(3). The figure is reprinted from Petrov and Morozov
(1994). This result shows that criterion (1), being the
more general form of (3), has the ability to describe the
crack initiation problem.

5 Results

After the stated problem is solved by the ANSYS FEM
package, together with an external program controlling
crack propagation, information about KI time depen-
dency and the crack extension history is provided for
further analysis. KI(t) is computed using the asymp-
totic behavior of the stress field surrounding the
crack tip.
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Fig. 5 Dependence of the normalized stress intensity factor
at crack initiation on normalized time-to-fracture. Comparison
of experimental data to analytical results obtained using crack
initiation criterion (3)

It was observed that, depending on the amplitude of
the applied pressure pulse A, three different modes of
crack propagation are possible. The first one is
trivial—amplitude that is too low results in no crack
extension. The second one is the mode observed by
Ravi-Chandar and Knauss (Fig. 3b). The crack starts
propagating at a constant speed. Then it arrests, due to
the energy flow into the crack tip which is no longer
sufficient for its propagation. When the energy from the
second trapezoid of the loading pulse approaches the
crack tip region, the crack reinitiates and starts propa-
gating at approximately the same speed as in the first
stage of its extension (Fig. 6a).

Further increase of load amplitude A results in a
propagation mode change. Now the crack is initiated,
propagates at some constant speed, and when the energy
from the second part of the loading pulse is delivered
to the crack tip region the crack is accelerated and con-
tinues propagation at a higher speed (Fig. 6b).

By adjusting the pressure amplitude A, it was found
that amplitudes around 5 MPa result in crack extension
histories very close to those observed by Ravi-Chandar
and Knauss (1984a). In Fig. 7, the computational result

Fig. 6 (a) Crack extension history. A = 5 Mpa; (b) Crack exten-
sion history. A = 12 MPa

for A = 5.1 MPa is compared to one of the experiments
presented in Fig. 3b.

6 Conclusions

It has been shown that, solving the dynamic problem
of linear elasticity by FEM and criterion (1) being used
to assess critical conditions for crack advancement, the
propagation of dynamically loaded cracks can be pre-
dicted. It has also been shown that criterion (1) with
d, chosen from the condition of coincidence of (1)
with Irwin’s criterion in static conditions can be used
to describe dynamic crack initiation, propagation and
arrest.

Criterion (1), unlike (3), which is applicable only to
crack initiation, can also be used as the condition for
crack propagation and arrest. In the presented model
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Fig. 7 Crack extension history. Comparison of FEM calculation
with the experimental data points of Ravi-Chandar and Knauss
(1984a)

(1) is used as a condition for node release. This cri-
terion does not even require the presence of a crack.
Thus, the condition for crack propagation and arrest
appears automatically. The crack propagates whilst (1)
is fulfilled for nodes ahead of the moving crack tip;
otherwise the crack arrests.

Using a similar method one can model cracks that
change their direction of propagation and even branch.
In this case (1) should be applied not only to stresses
acting perpendicular to the x1 direction, as is done in
the presented research, but in all the possible directions
surrounding the x* point.

According to the incubation-time based approach
by Petrov and Morozov (see Petrov 1991, (in Russian)
or Petrov and Morozov 1994), in combination with a
variety of widely known experimental observations,
the critical stress intensity factor at the crack initia-
tion moment under high rate loads may, depending on
the experimental geometry, loading conditions and his-
tory, either be noticeably smaller or greater than KIC .
This instability of dynamic fracture toughness is par-
ticularly evident while comparing two different load
application histories (Petrov et al. 2003). In the first
case, a suddenly applied dynamic load is maintained
at a constant level up to the moment of crack initia-
tion (ex. Smith 1975; Ravi-Chandar and Knauss 1984a;
Rizal and Homma 2000; Homma et al. 1992). In this
case Kd

I usually significantly exceeds the static KIC . In
the second case, when the fracture is excited by short
load pulses with time shapes close to the delta func-
tion, threshold amplitude, Kd

I is usually significantly

less than KIC (ex. Atroshenko et al. 2002; Shokey et al.
1986).

This reasoning shows that the dynamic fracture
toughness, Kd

I , is not an intrinsic characteristic of a
material and that usage of critical stress intensity fac-
tor criterion (KI (t) ≥ Kd

I ) to describe dynamic frac-
ture initiation cannot be universally correct. For the
same reasons it is impossible to describe dynamic frac-
ture initiation using rate dependent Kd

I . Application
of the incubation-time based approach allows one to
describe all variety of experimentally observed effects
in fracture dynamics. An important consequence of this
approach is that it provides an effective way of test-
ing dynamic strength by direct measurement of τ , a
parameter intrinsic to the material and not dependent
on experimental geometry or the way the load is applied
(Petrov 2004). This provides a tool that can be directly
incorporated into practical engineering.

The results presented in the current paper show that
a similar approach can be successfully used to describe
dynamic crack propagation and arrest.

Remarkable progress in modern computational frac-
ture dynamics is connected with the introduction of
cohesive zone models into finite element and other
numerical schemes. The idea that Barenblatt originally
proposed as a model for quasistatic cracks (Barenblatt
1962) appeared to be very useful also for dynamic
cracks (ex.Xu and Needleman 1995; Camacho and
Ortiz 1996; Remmers et al. 2004). It was shown that
incubation time fracture criterion can be reformulated
into a kind of cohesive law (Morozov and Petrov 2000).
This means it is possible to create a cohesive zone
model providing results identical to the predictions
made by the incubation time approach used in the
current study.
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