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It is known that, within the framework of linear
fracture mechanics (LFM) under quasi�static loading,
the mechanical�stress field in the vicinity of the tip of
a symmetrically loaded crack represented by a mathe�
matical linear cut is determined by stress�intensity
factor (SIF) KI for the first loading mode, the corre�
sponding critical value of which is found experimen�
tally. The criterion of the critical intensity factor
widely used in engineering practice was extended in
many works also to the dynamic�fracture case [1, 2]:

(1)

Under this limiting condition, P(t) is the general
dynamic loading, Ω(t) is the current sample configu�
ration including the time�varying crack size L(t), and

(t) =  is the current crack�propagation velocity.

It is assumed that the equality sign is implemented in
Eq. (1) during the propagation of the crack from the
moment of starting to the moment of stopping. On the
right in Eq. (1), there is a function called the fracture
dynamic viscosity KId, which is in most cases consid�
ered as the material function of the local (in the vicin�

ity of the crack tip) loading rate (t) = , the tem�

peratures T, and other characteristics of the experi�
ment. When calculating the fracture process, the
right�hand side in Eq. (1) is assumed a priori known
and is determined from experiments for this material.
Now this approach is reasonably widely spread in the
dynamic�fracture calculations. Nevertheless, many
experimental results obtained, for example, by the
authors of [3–5], impugn the analysis based on using
criterion (1) and, in particular, the presence of a direct
dependence between current critical intensity factor
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KI derived from the LFM principles and crack propa�
gation velocity. In [3–5], it is established that in the
case when the samples are exposed to high�rate shock
loading initiating fast crack growth, the crack velocity
can remain practically constant even at very significant
variation in the current intensity�factor values. The
authors of the papers [3–5] assumed that the energy
flux determined by the current stress�intensity factor is
unambiguously independent of the macroscopic
crack�propagation velocity, although it significantly
affects the structure of the newly formed surface.
Thus, the conclusions made in [3–5] reject the
method based on using the LFM and limiting condi�
tion (1) accepted in many investigations.

It turned out that the effects of the behavior of
cracks for high�speed shock loadings observed in [3–
5] are predicted well and simulated on the basis of the
structural–time approach based on the concept of the
fracture incubation time [5–7].

On the other hand, a quite steady dependence of

the crack�propagation velocity (t) on its length L(t)

(which is treated also as the dependence on KI ∼ )
is sometimes observed in many experiments. For
example, it can be observed in experiments [9, 10] in
which the samples in the form of flat plates with initial
macrocracks were exposed to a slow quasi�static
stretching, which at a certain moment resulted in the
start, then the acceleration, and the subsequent fast
dynamic propagation of a crack through the entire
plate. The behavior observed in [9, 10] does not prin�
cipally contradict the scheme in the basis of criterion
(1); however, it requires a very technologically com�
plex and expensive determination of the functional in
the right�hand side of this limiting equation. Besides
this, the utilized rate dependences of fracture tough�
ness are highly unstable—it is observed in many
experimental works. This problem is not resolved
within this scheme.

When comparing the experiments carried out
under various conditions for the same material, it is

L·

L

MECHANICS

Simulation of Dynamic Crack Propagation
under Quasi�Static Loading

N. A. Kazarinov, V. A. Bratov, and Corresponding Member of the RAS Yu. V. Petrov
Received September 20, 2013

DOI: 10.1134/S1028335814020116

St. Petersburg State University, St. Petersburg, 199164 Russia
e�mail: nkazarinov@gmail.com; yp@YP1004.spb.edu
Institute for Problems of Mechanical Engineering, Russian 
Academy of Sciences, St. Petersburg, 199178 Russia



100

DOKLADY PHYSICS  Vol. 59  No. 2  2014

KAZARINOV et al.

possible to conclude that the critical stress�intensity
factor, nevertheless, cannot be considered as a mate�
rial function invariant with respect to the history and
conditions of loading, which completely determines
dynamic crack propagation even with rate depen�
dences taken into account explicitly (as, for example,
in (1)).

In [6–8], it was shown that it is necessary to take
into account the incubation processes accompanying
material macrofracture to explain crack propagation
under the action of high�rate shock loadings. On this
basis, we successfully numerically simulated in [11]
the experiments [3, 4] describing the onset of crack
propagations, its motion, and crack arrest. The results
of the simulation are shown in Fig. 1.

We show that the results of both types of experi�
ments mentioned can be explained successfully using
the structural–time approach. We perform numerical
simulation of experiments from [9, 10] implementing
the method based on introducing the incubation time
fracture criterion [11] into the finite�element scheme.
The corresponding theory of dynamic fracture is for�
mulated in [6–8]. According to it, the critical condi�
tion of the material failure at a point x and at the
moment of time t can be written as follows:

(2)

where τ is the incubation time characteristic for the
fracture process at this scale level, which is a constant
of the material independent of the type of loading and
the sample geometry; and d is the characteristic size of
the zone in which the sample fracture takes place. It
should be noted that d is also the material constant for

1
τ
�� 1

d
�� σ x' t',( ) x'd t'd
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∫
t τ–
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this material and for a certain scale level. Here, σ(x, t)
is the stress at the point under study at the moment of
time t, σc is the critical stress obtained in static exper�
iments with the samples, the sizes of which agree with
the boundaries of this scale level [12]. We note that d is
unnecessarily related unambiguously to certain inter�
nal geometrical properties of the material, for exam�
ple, with the crystal�lattice�cell size. We accepted the
interpretation of d as the scale fit parameter for the
strength characteristics determining the lower bound�
ary of the scale level on which the fracture process is
investigated [12, 13]:

(3)

where KIc and σc are assumed as measured at the same
scale level. Thus, Eq. (3) enables us to calculate the
characteristic fracture�zone size d determining the
lower scale boundary or the smallest element of frac�
ture for this scale level [12].

Following the scheme [9, 10], we consider the ini�
tial�boundary�value problem for a PMMA plate with
the following size ranges: 10–20 cm in width, 14–
25 cm in height, and 1.6–3.2 mm thick (for the
numerical simulation, we selected samples with the
largest sizes in width and height and 3 mm thick). On
the plate, an initial crack of 4–6 mm in length is
formed. Further, the upper and lower edges of the
sample are fixed in holders of the extension machine,
which start to move with a reasonably low speed for
neglecting the wave effects. The authors of [9, 10] had
the possibility to trace the crack�tip position and to
measure its propagation velocity. In addition, the
stress necessary for the crack start, which was used in
the simulation, was fixed.

Further, we assumed linear�elastic behavior of the
flat area simulating the plate at all moments of time.
The displacement and stress fields are determined by
the dynamic equations of the linear theory of elasticity

(4)

with the corresponding boundary and initial condi�
tions

(5)
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Fig. 1. Results of simulation of tests with dynamic loading
of samples; the curves are the simulation [11], and the
points are experimental data [3].
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Uy(X ∈ Γ2, t) = 0 is the symmetry condition,

Here, X = (x1, x2) = (x, y) and  = (U1, U2) = (Ux, Uy);
v is the velocity of motion of holders of the extending
machine; LAMBDA and MU are Lame coefficients.
Due to the symmetry of the problem, we simulated

σy X Γ3∈ t,( ) σxy X Γ2 Γ3∪ t,∈( ) 0.= =

U

only half of the plate. In this case, the symmetry line
coincides with the crack�propagation trajectory (see
Fig. 2). As the initial moment of time, we accepted the
moment of start of the motion of holders.

The simulation is carried out in the finite�element
package ANSYS with using the individual program
modulus providing fracture criterion (2) check and
implementing the crack propagation.

The finite element size was chosen due to used
fractute criterion—the side of square elements along
crack propagation path equals 0.2 mm. This value
coincides with the size of the fracture structural cell for
experiment scale level (3).

The values of KIc and σc were obtained for the
quasi�static tests of samples comparable with dimen�
sions of plates in the simulated experiments. Thus,
their use is correct for the calculation of d for the sim�
ulation. It should be noted that, at such a choice of the
element size, the smallest crack length increment
equals d, which correctly agrees with the interpreta�
tion of this parameter as the characteristic fracture�
zone size.

The crack propagation is implemented due to
removal of fastening in a lattice site in which criterion (2)
was fulfilled.

In the table, we listed the material parameters that
were used in the simulation. Figure 2 shows the results
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Fig. 2. Scheme of J. Fineberg simulation experiments [9].
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Fig. 3. Results of simulation of tests with quasi�static loading. Dependence of crack velocity on crack length; 1 is the simulation,
and 2 is the experiment [9].
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of simulation (the light strip) and the experimental
data (the dark strip). The crack velocity in the steady
mode of motion quite precisely coincides with the
experimental values. At the start, the crack moves with
very high acceleration, then, the crack velocity stabi�
lizes.

Thus, it is shown that the use of the structural–time
approach and the fracture incubation�time criterion
enables us to predict successfully the results of experi�
ments both on quasi�static [9, 10] and on dynamic
[3–5] loading of samples with cracks.

The proposed approach makes it possible to reject
the conventional method based on introducing the
dynamic fracture toughness KId, which actually is not
a material property and cannot be efficient for describ�
ing the dynamic fracture due to its strong dependence
on the loading history [6–8]. From [3–5, 11] and the
calculations carried out, it also becomes clear that the
dependence of the crack velocity on the stress�inten�
sity factor cannot be considered as a material law
because the properties of this dependence are deter�
mined by the sample configuration, the history, and
the loading method.

The correct prediction of the dynamic fracture is
possible on the basis of the structural–time criterion
taking into account the incubation processes accom�
panying the dynamic material failure and containing
the new physical parameter—the incubation time,
which is the material constant within the limits of the
chosen scale level. The incubation time can be found
in independent experiments and, then, used for pre�
dicting fracture in a wide range of loading rates—from
slow quasi�static to the high�rate shock�wave ones.
Supplementing it with conventional reference param�
eters and the simply calculated structural�element size

d, it is possible, as shown above, to predict a wide spec�
trum of the effects accompanying the dynamic growth
of cracks. Thus, the developed approach can be con�
sidered as a reasonably simple but, at the same time,
efficient tool for both theoretical investigations and
engineering practice.
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Table 

Young’s modulus E 3.5 GPa

Poisson’s ratio ν 0.32

Density ρ 1200 kg/cm3

Critical stress σc 60 MPa

Critical SIF 1.1 MPa 

d 0.2 mm

τ 1.5 µs

m


