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The steady-state regime of a moving load on an elas-

tic half-plane is addressed. It is shown that the so-

lution can be expressed through a single harmonic

function, similarly to the known eigensolution for

surface Rayleigh wave, thus reducing a vector prob-

lem in linear elasticity to a scalar one for the Laplace

equation. Examples of steadily moving vertical force

and punch are investigated, illustrating the proposed

approach.

1 Introduction

The problem of a moving load on elastic half-space
has been studied since well-known paper [1], fol-
lowed by a number of contributions, see e.g. [2] and
references therein. We also mention the work [3],
revisiting the results of [1] in the transonic range.
It is remarkable that the steady-state solution is
defined up to rigid body motion components, with
those determined from the corresponding transient
problem [4].
It is known since [1] that resonant behaviour is

associated with the case when the speed of the load
coincides with the Rayleigh wave speed. A progress
in investigating the near-resonant regimes has been
reported in [5], within the framework of the ex-
plicit model for the Rayleigh wave [6], see also [7]
and references therein. This approach has been re-
cently developed to 3D moving loads, allowing sim-
ple approximate solutions in terms of elementary
functions, see [8] and [9].
The aforementioned asymptotic model for the

Rayleigh wave is relying on the representation of
the surface wave field in terms of a single plane har-
monic function derived in [10], see also [11]. It is in-
teresting that a similar representation was obtained
earlier in [12]. Unfortunately, it went seemingly un-
noticed by the “western” academic community.
The idea of this article originates from an analogy

of the problem under consideration with the afore-
mentioned representation for the Rayleigh wave
field of general time-dependence. Below the sub-

sonic solution of the steady-state moving load prob-
lems is also obtained in the form of plane harmonic
functions.
The paper is organised as follows. First of all, we

state that the wave potentials satisfy elliptic equa-
tions in the moving coordinate system for the sub-
sonic speeds of the moving load. Then, the method-
ology of [10], reducing a vector problem in 2D elas-
ticity to a scalar problem for the Laplace equation,
is developed. Several illustrative examples are pre-
sented. Finally, an extension of the technique to
moving punch is discussed.

2 Statement of the problem for a verti-

cal force

Consider dynamics of an elastic isotropic half-plane
−∞ < x1 < ∞, 0 6 x2 < ∞, caused by the action
of a force P = P (x1 − ct), moving steadily at a
constant speed c, see Fig. 1. In what follows, we
focus on the subsonic regime c < c2 < c1, where
c1 and c2 are the longitudinal and transverse wave
speeds, respectively.
The equations of motion are taken in standard

form, e.g. see [13],

σij,j = ρui,tt, i, j,= 1, 2, (1)
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Figure 1: Moving force.
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with the Einstein summation convention assumed
and comma indicating differentiation along the as-
sociated spatial or time variable. Here σij and ui
denote the components of the stress tensor and dis-
placement vector, respectively, and ρ is the volume
density.
The constitutive relations for a linear isotropic

solid are given by

σij = λδijuk,k + µ(ui,j + uj,i) , i, j, k = 1, 2, (2)

where δij is the Kronecker delta, and λ and µ are
the Lamé elastic moduli.
The boundary conditions along the surface

x2 = 0 are written as

σ12 = 0, σ22 = P (x1 − ct). (3)

Let us introduce the elastic wave potentials
through

u1 = φ,1 + ψ,2, u2 = φ,2 − ψ,1. (4)

Then, on employing the Hook’s law (2), the original
equations (1) become

∆φ− c−2
1 φ,tt = 0, ∆ψ − c−2

2 ψ,tt = 0. (5)

Here ∆ is the two-dimensional Laplace operator in
variables x1 and x2, and c1 =

√

(λ+ 2µ)/ρ and

c2 =
√

µ/ρ are the longitudinal and transverse
wave speed, respectively. The boundary conditions
(3) are expressed in terms of the potentials φ and
ψ as follows:

2φ,12 + ψ,11 − ψ,22 = 0, (6)

λφ,11 + (λ+ 2µ)φ,22 + 2µψ,12 = P (x1 − ct). (7)

Introducing the moving coordinate ξ = x1 − ct,
the governing equations (5) take the form

φ,22 + α2
1φ,ξξ = 0, ψ,22 + α2

2ψ,ξξ = 0, (8)

where α2
k = 1 − c2/c2k (k = 1, 2). Equations (8)

are elliptic for subsonic speeds (c < c2) under con-
sideration. Therefore, the sought for potentials are
plane harmonic functions, i.e.

φ = φ(ξ, α1x2), ψ = ψ(ξ, α2x2). (9)

On substituting the latter into the boundary con-
ditions (7), we have

2φ,ξ2 + (1 + α2
2)ψ,ξξ = 0, (10)

−(1 + α2
2)φ,ξξ + 2ψ,ξ2 =

P (ξ)

µ
. (11)

Noting parallels with the consideration in [10] for
the Rayleigh wave and using the Cauchy–Riemann
identities for harmonic functions, it is possible to
relate the elastic potentials to each other as

ψ =
2α1

α2
2 + 1

φ∗, (12)

with the asterisk denoting a harmonic conjugate.
Hence, the displacement components are expressed
in terms of a single harmonic function as

u1(ξ, x2) = φ,ξ(ξ, α1x2)−
2α1α2

1 + α2
2

φ,ξ(ξ, α2x2) ,

(13)
and

u2(ξ, x2) = φ,2(ξ, α1x2)−
2

1 + α2
2

φ,2(ξ, α2x2) .

(14)
Using the relation (12), the second boundary con-
dition (11) takes the form

φ,ξξ
∣

∣

x2=0
= −

(1 + α2
2)P (ξ)

µR(c)
, (15)

where
R(c) = (1 + α2

2)
2
− 4α1α2, (16)

confirming a resonance occurring when the speed
of the load is equal to that of the Rayleigh wave
speed.
The last expression (15) is a boundary condition

for the elliptic equation (81), say, if P (ξ) = P0
dp

dξ
,

then on employing the Poisson formula, see e. g.
[14], the derivative φ,ξ is given by

φ,ξ(ξ, α1x2) =
A

πR(c)

∫ ∞

−∞

α1x2p(r)

(r − ξ)2 + α2
2x

2
2

dr,

(17)
enabling a straightforward calculation of the dis-
placement field using (13), (14). In the above,

A = −
(1 + α2

2)P0

µ
.

For example, for a moving point load P (ξ) =
P0δ(ξ), e.g. see [1], integration in (15) gives

φ,ξ
∣

∣

x2=0
=

A

R(c)

[

H(ξ)−
1

2

]

. (18)

Here an arbitrary constant generally cannot be de-
termined from the steady-state formulation, and
may only be obtained from the analysis of the as-
sociated transient problem, for more details see [4]
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Figure 2: Convergence of the horizontal dis-
placement for a distributed load to solution
for point load.

and also [5]. The value 1
2 in (18) is chosen in order

to have symmetry.
On satisfying the boundary condition (18), the

harmonic function φ,ξ(ξ, α1x2) is found as

φ,ξ(ξ, α1x2) =
A

πR(c)
tan−1 ξ

α1x2
. (19)

Finally, the displacements are given by

u1(ξ, x2) =
A

πR(c)

[

tan−1 ξ

α1x2

−
2α1α2

1 + α2
2

tan−1 ξ

α2x2

]

(20)

and

u2(ξ, x2) = −
α1A

2πR(c)

[

ln
(

ξ2 + α2
1x

2
2

)

−
2

1 + α2
2

ln
(

ξ2 + α2
2x

2
2

)

]

(21)

These expressions are identical to those (Eqs. 25,
26) presented in [1], up to a rigid body motion com-
ponent of the horizontal displacement.
Consider now an example of a distributed load in

the shape of a step-function

P (ξ) =
H(ξ)−H(ξ − s)

s
, (22)

where H(ξ) is the Heaviside function and s is the
width of a step. It is clear that in the limit s → 0,
this step function will become the Dirac delta.
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Figure 3: Convergence of the vertical displace-
ment for a distributed load to solution for
point load.

The displacements for the distributed load (22) are
given by expressions (13) and (14), where the func-
tions φ,ξ and φ,2 are given by

φ,ξ(ξ, αx2) = ξ tan−1 ξ

αx2
−
αx2
2

ln
(

ξ2 + α2x22
)

(23)
and

φ,2(ξ, αx2) = ξ ln(ξ2 + α2x22)− 2ξ

+ 2αx2 tan
−1 ξ

αx2
. (24)

The following Figs. 2–5 illustrate the obtained
displacement field (20), (21), (23), and (24), scaled
by P0. The material parameters used in calcula-
tions are those of the PMMA, for which the bulk
wave speeds are c1 = 2730 km/h, c2 = 1430 km/h,
with the force moving at c = 0.9c2 = 1287 km/h,
with the volume density ρ = 1180 kg/m3.

Figs. 2 and 3 show the limiting process as the
solution for distributed force tends to that of the
point force, corresponding to s→ 0 for the horizon-
tal and vertical displacements, respectively. The
dependence on the moving coordinate ξ is pre-
sented, with depth variable set to x2 = 0.1.

In Figs. 4 and 5 the variation of the horizontal
and vertical displacements versus the moving co-
ordinate ξ is shown for several values of depth x2.
The graphs in Figs. 4 and 5 are plotted for a dis-
tributed load of width s = 1. The decay of the
amplitude with depth is clearly observed.
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Figure 4: Horizontal displacement for a dis-
tributed load.
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Figure 5: Vertical displacement for a dis-
tributed load.

3 Rigid punch

The same methodology may be applied to mixed
boundary value problems [15]. In particular, con-
sider the steady-state problem for a rigid punch
moving along the boundary of an elastic half-plane
H

+
2 at a constant speed c < c2 in the absence of

friction, see Fig. 6.
The equations of motion in the moving coordi-

nate frame (ξ, x2) are again taken in the form (8),
whereas now the boundary conditions along the
surface x2 = 0 are

σ22 = 0, ξ ∈ S1;

u3 = f(ξ), ξ ∈ S2;
(25)

and
σξ3 = 0, −∞ < ξ <∞, (26)

x
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Figure 6: Moving punch.

where S1 ∪ S2 = R. Due to the last condition (26),
potential ψ is a Hilbert tranform of φ, with (12)
holding true. On introducing the auxiliary function

φ1 =
α2
2 − 1

α2
2 + 1

φ,2 (27)

and scaling z = α1x2, it is possible to reduce the
first equation (8) with (25) to a conventional mixed
boundary value problem for the Laplace equation.
Thus, we have

φ1,zz + φ1,ξξ = 0 (28)

subject to

φ1 = f(ξ), ξ ∈ S2;

φ1,ξ = 0, ξ ∈ S1,
(29)

along the surface z = 0.

4 Concluding remarks

The presented approach allows a straightforward
treatment of the subsonic regime of a moving load
on an elastic half-space. In particular, the original
vector problem in elasticity is reduced to a scalar
problem for the Laplace equation.

The described approach has a potential to be
generalised to the three-dimensional setup, see [16],
and also to layered [17] and anisotropic media, see
e. g. [18] and [19]. Another direction of extension
is associated with moving disturbances along the
interface of two media, see [16] and [20]. There is
also a possibility of simplified analysis of a moving
load on a beam resting on an elastic half-space, e. g.
see [21].
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