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Transient effects of stress-strain fields in the vicinity of a stationary crack tip under high rate loads are discussed. Exact ana-
lytical solutions to near tip stresses are compared to fields prescribed by leading terms (one or several) of Williams asymptotic 
expansion. Influence of load application mode, time (or, which is the same, distance from a crack tip) and Poisson’s ratio on 
this discrepancy is extensively examined. Some effects connected with crack tip propagation speed are also discussed. Signifi-
cant inconsistencies between real (or received in numerical solutions of state equations – e.g. finite element computations) 
crack tip fields and stress intensity factor (SIF) singular field observed by numerous researchers are explained. The scope of 
problems where SIF field can be used for correct prediction of dynamic stress-strain fields in the crack tip region is established. 
Possibility to correctly approximate fields that are not SIF dominated, accounting additional terms of Williams expansion, is 
studied. 

transient crack tip fields, dynamic fracture, high-rate loads, asymptotic expansions 
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List of main symbols 

ij  components of the Cauchy stress tensor 

t   time 
r, polar coordinates with origin at the crack tip 
KI  the first term of the asymptotic expansion of 

stresses surrounding the tip of the mode I loaded 
crack (the mode I stress intensity factor) 

Rn  the second and the following terms of the as-
ymptotic expansion of stresses surrounding the 
crack tip 

ij angular functions  
x(x1, x2)  Cartesian coordinate 
W=W(t,x) displacement field 
u,v  components of displacement 
  shear modulus 
  Poisson’s ratio 

E  Young’s modulus 
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 longitudinal wave speed 

2c



  transversal wave speed 

cR  Rayleigh wave speed 
f(t)  time dependent load 
P  load amplitude 
H  Heaviside step function equal to 0 if the argu-

ment is negative and equal to 1 otherwise 
,  longitudinal and transversal wave potentials 
  mass density 
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/

2(1 )
c c
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 ratio of longitudinal and transverse wave speeds 

1/R Rc c  ratio of Rayleigh and longitudinal wave speeds 
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iS   the sum of the first i terms of the asymptotic 

expansion 

c   the critical value for tensile stress (ultimate 

strength) 

CK  the critical value for stress intensity factor 

 the microstructural time of a brittle fracture 
process (or fracture incubation time) – a parame-
ter characterizing the response of the studied ma-
terial to applied dynamic loads.  is constant for a 
given material and does not depend on problem 
geometry, the way a load is applied, the shape of 
a load pulse and its amplitude 

d  characteristic size of fracture process zone 

1  Introduction 

Transient effects connected with dynamic effects of impact 
loaded cracks have been studied and observed analytically, 
numerically and experimentally for the last 50 years. Re-
markable analytical solutions in crack dynamics belong to 
Yoffe [1], Ang [2,3], Freund [4], Achenbach [5–7], Eshelby 
[8], Broberg [9,10] and Kostrov [11–13]. As a particular 
case, Kostrov’s solution gives an exact representation for 
stress-strain fields in the vicinity of an impact loaded sta-
tionary semi-infinite crack. A similar solution will be exten-
sively used in this paper as a reference result, which will be 
compared to stress-strain fields prescribed by leading terms 
of the Williams asymptotic expansion [14]. Though utiliz-
ing Kostrov’s approach one can achieve solutions to a wide 
range of problems and loads (it raises a possibility to con-
struct a solution for arbitrary moving cracks subjected to 
arbitrary loads), the result is normally very complicated and 
hard or even impossible to analyze. This is one of the rea-
sons why the stress intensity factor is traditionally used to 
describe stressed conditions surrounding a crack tip.  

Another reason for this is that the first approaches in 
fracture dynamics were connected with attempts to migrate 
Irwin’s approach [15], successful for the majority of mate-
rials, geometries and loads in static conditions, directly into 
a dynamical situation.  

Williams expansion [14] of crack tip stress field for 
mode I loaded crack reads: 
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where  stands for stress depending on time t, distance to 
the crack tip r and angle , indices i and j assume the values 
1 and 2, and KI is the mode I stress intensity factor, chang-
ing with time. Angular functions ( , )ij n   are given by: 
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In static conditions ( )K t and ( )nR t  are constants. 

While solving quasistatic problems, the first singular term 
of Williams expansion normally gives a good representation 
of stress field adjacent to a crack tip. In this case analysis of 
critical fracture conditions can be done utilizing only stress 
intensity factor (SIF)-Irwin’s critical SIF criterion is appli-
cable. In the dynamic case ( )K t and ( )nR t  change with 

time. Each of these functions will depend not only on time 
but on loads applied as well. Therefore accuracy of singular 
KI field will depend not only on a point location (i.e. r and  
) as in statics but even on time. 

Numerous researchers observed that KI field does not 
always correctly reflect results it receives while numerically  
solving dynamic problems of linear fracture mechanics (e.g. 
utilizing the finite element method (FEM), the boundary 
element method (BEM) or meshless methods) [16]. They 
observed that for some class of problems, dynamic field 
surrounding the vicinity of a crack tip is not KI dominated. 

Though Kostrov’s solution is known for more than 50 
years and is applicable in a wide variety of problems, there 
is no general unanimity among researchers working in frac-
ture dynamics field about conditions and reasons leading to 
appearance of these transient effects. Some authors cor-
rectly associate this with impossibility to apply the KI sin-
gular field while describing some of the extremely dynamic 
problems. 

This paper is an attempt to determine the range of prob-
lems for which the singular field created in a crack tip re-
gion is not KI dominated. For such problems possibility to 
represent stress-strain fields with a finite number of terms of 
Williams expansion is also studied. It will also be shown 
that for some problems Williams expansion is not converg-
ing to real stress field. In this case only the exact solution 
can give a correct description of a dynamic process. 

2  Problem formulation and analytical solution 
1: anti-plane case 

Infinite elastic plane with a semi-infinite cut {(x1, x2)}: 
x2=±0, x10 is considered. Displacement field is given by 
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( , ),W W t x  where t stands for time and x is coupled with 

stresses by 
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where  is the shear modulus and W satisfies the wave 
equation:  
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with 2c  being the speed of the transversal wave. For nega-

tive times media are stress free: 

 
0

0.
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W =  (4) 

On the cut {(x1, x2)}: x2=±0, x10, we suppose: 
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To receive unique solutions of eqs. (2)–(5) requires absence 
of energy sources in the vicinity of a crack tip: 
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1 2( ), 0, 0, 0 .W O r r x x t           (6) 

Solutions of eqs. (2)–(6) are well-known (ex. [17]). For the 
case of ( ) ( )f t PH t  , where ( )H t  is the Heaviside step 

function, solution for stresses on crack continuation gives: 
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Expanding eq. (7) into series one can get: 
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Corresponding value of the stress intensity factor in this 
case will be: 
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Suppose that the impact is not applied on the crack faces, 
but is delivered to the crack region by a wave generated by 
a load applied at infinity:  
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In this case eq. (5) is substituted by:  
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If ( ) ( ),f t P H t   then the solutions of eqs. (2), (3), (6), 

(10) and (11) give:  
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for stresses on continuation of the crack. Stress intensity 
factor time dependence will be the same as eq. (9) and se-
ries expansion of 

2 3x x  will differ from eq. (8) by elimi-

nated constant pressure term –P:  
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Using eqs. (7) and (12) it is easy to construct a solution for 
arbitrary f(t). Corresponding result is achieved using time 
convolution of eq. (7) or eq. (12) with f(t). Arbitrary load 
can be presented as a convolution with the Heaviside step 
function:  

 ( ) ( ) ( )d .f t H s f t s s
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where 
2 3 1 2( , , )x x s x x  is taken from eq. (7) for the case of 

load applied on the crack faces or eq. (12), for the case of 
load delivered by a wave, will give a solution to stresses.  

Later the solution for load that is linearly growing with 
time will be used. In this case  
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For the case of load applied at crack faces the solution to 
stresses on crack continuation reads:  
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Series expansion of eq. (15) gives:  
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Corresponding stress intensity factor will be:  
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3  Problem formulation and analytical solution 
2: plane case 

The plane dynamic problem of elasticity is considered. 
Homogeneous isotropic infinite plane has a semi-infinite cut 
{(x1, x2)}: x2=±0, x10. Stress field is given by potentials  
and , satisfying the following conditions: 
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Here  and  are longitudinal and transversal wave poten-
tials, and c1 is the speed of longitudinal wave. Components 
of displacement u and v are coupled with  and  by: 
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Crack faces are free from tractions:  
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Initial conditions are given by a wave approaching the crack 
region from infinity: 
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It is requested that displacements are bounded at an area 
adjacent to the crack tip, which guarantees the uniqueness 
of the solution. 

Stresses can be evaluated via potentials: 
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where  is the mass density and 2 1/ .c c   

The solution [18] to eqs. (18)–(22), received for wave 
potentials is: 
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where Re( )   and Re( )  , with   and  being 

analytical everywhere.  is a coordinate on a complex plane. 

1/ ,R Rc c   where Rc  is the Rayleigh wave speed.  
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with ( )R z  being the Rayleigh function:  
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and arg( )z  being the argument function: 
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z
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By substituting eq. (23) into eq. (19), displacements can 
be found. Presented formulas give the solution for load cre-
ated by elementary longitudinal wave. Solution for load 
created by elementary transversal wave can be achieved 
analogously. Solutions for more complex loads can be 
achieved as a time convolution of presented solution or/and 
solution for transversal wave.  

Using the presented solution and eq. (22) stresses on 
continuation of a semi-infinite crack for the problem when a 
load is delivered to the crack region by a falling wave, 
Stresses on continuation can be found:  
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 (24) 

Load corresponding to constant pressure suddenly applied 
on the crack faces can be presented as a wave:  
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Convolution of eq. (24) with loads given by eq. (21) or eq. 
(25) will give exact solutions to the plane problem with load 
delivered to the crack region by a falling wave or a load 
applied directly on the crack faces. 

Evaluating asymptotic expansion for stresses on con-
tinuation of a cut in this problem one will get:  
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for the case of impact applied on the crack faces and  
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when the load is delivered to the crack by a wave ap-
proaching from infinity. 

4  Accuracy of asymptotic representation of 
stress state surrounding dynamically loaded 
crack tip 

At this section accuracy of presented asymptotic solutions 
will be analyzed. For the comparison of stresses evaluated 
accounting several first terms of Williams expansion to ex-
act analytical solution the following expression is intro-
duced:  

 100%.iS
Q



   

 
 (28) 

Here 
2 3x x   for the anti-plane case and 

2 2x x   for 

the plane problem. iS  is the sum of the first i terms of 

Williams expansion (1). Thus, eq. (28) gives a relative error 
of asymptotic approximation.  

To start with, behavior of Q at the anti-plane problem 
with load suddenly applied on the crack faces is discussed. 
To evaluate Q in this situation one should use stress  given 
by eq. (7) and iS  given by eq. (8), taking the first 1, 2 or 3 

terms. Results are presented in Figures 1(a) and 1(b).  
The horizontal axis in Figures (Figures 1(a), 1(b) and all 

the following figures) stands for dimensionless value ct/x1. 

This value shows the distance from the studied point x to 
the position on the crack continuation where the wave front 
is currently situated. After the front has passed point x, 
ct/x1>1 is fulfilled. According to computational results 
given in Figure 1(a), if the front of the wave is less than 
100x1 away from the point with coordinate x1 on the crack 
continuation, representation using only singular term of the 
Williams expansion – stress intensity factor (upper curve in 
Figure 1(a)) is appreciably incorrect (by more than 20%). 
For ct/x1>200 the misfit is considerably reduced (less than 
10%). When the second term of Williams expansion is 
taken into consideration (lower curve in Figure 1(a) or up-
per curve in Figure 1(b)), the situation is improved signifi-
cantly. In this case already for ct/x1>10 error is less than 
10%. Taking the third term of expansion into account 
(lower curve in Figure 1(b)) improves the result even more. 
Already for ct/x1>2 the error is below 10%. For ct/x1>5 mis-
fit between the result received using the first three terms of 
Williams expansion and the exact solution is less than 1%. 

To begin with, a problem for crack faces loaded by uni-
formly distributed pressure growing in time with a constant 
rate V is studied. To receive the desired error estimation in 
this case one should substitute corresponding exact solution 
eq. (15) and approximation eq. (16) into eq. (28). The re-
spective curves are presented in Figures 2(a) and 2(b). As it  

 
Figures 1  Relative error of asymptotic series solution of the anti-plane 
problem with constant load suddenly applied on the crack faces. (a) Upper 
curve-first term (SIF), lower curve-two first terms; (b) upper curve-two 
terms, lower curve-three terms. 

(27) 

(26) 
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Figures 2  Relative error of asymptotic series solution of the anti-plane 
problem with load growing at a constant rate suddenly applied on the crack 
faces. (a) Upper curve-first term (SIF), lower curve-two first terms; (b) 
upper curve-two terms, lower curve-three terms. 

is seen from these figures, behavior of the misfit between 
the exact solution and the first terms of asymptotic expan-
sion remains qualitatively unchanged. The accuracy is 
slightly reduced. 

The next problem to be analyzed is the problem with 
stress free crack faces and a load given by a wave with con-
stant amplitude P, moving from infinity with a front parallel 
to the crack. The exact expression for stresses in this prob-
lem is given by eq. (12) and an approximate asymptotic 
solution differs from eq. (8) by absence of -P term. Substi-
tuting these solutions into eq. (28) and performing computa-
tions one can receive data presented in Figure 3. As one can 
see in this problem the accuracy of approximation using 
only stress intensity factor is essentially better. It is even 
more exact than representation using two first terms of Wil-
liams expansion in the previous problems (Figures 1(a) and 
2(a)). This is connected with the fact that in this case the 
term following stress intensity factor K(t) in eq. (1) is miss-
ing (R0(t)=0). 

The analogues analysis is performed for solution of the 
problem in the plane case. The first of the examined load 
options is a uniformly distributed pressure suddenly applied 
on the crack faces (

2 2 12 2
( ),  0x x x xPH t    ). The solu-

tion for 
2 2x x  on the crack continuation is given by the  

 

Figure 3  Relative error of asymptotic series solution of the anti-plane 
problem with a load given by a wave with constant amplitude, moving 
from infinity with a front parallel to the crack. Upper curve-first term (SIF), 
lower curve-two first terms. 

convolution of stress given by eq. (24) with load eq. (25). 
The corresponding asymptotic solution is given by eq. (27). 
In this case both the exact and the asymptotic solutions are 
depending on the ratio between longitudinal and transversal 
wave speeds =c2/c1. Misfit between the solution achieved 
using only singular term of the asymptotic expansion (K) 
and exact solution is presented in Figure 4 for different val-
ues of . The approximation in a limiting case of Poisson’s 

ratio  equal to 0 ( 1/ 2  ) is not strictly accurate as com-

pared with the corresponding anti-plane problem results. 
Decrease of  (increase of ) results in reduction of accu-
racy of approximation using the stress intensity factor. This 
is explained by the fact that the multiplier at square root 
singular term in the anti-plane problem (1/≈0.64) is big-

ger than the multiplier at the plane case ( 22 2 1 ,    

with =1/ 2  0.45). Figures 5(a) and 5(b) give a compari-
son of accuracy of the asymptotic approximation using one 
(stress intensity factor), two and three first terms (while  

 

Figure 4  Relative error of SIF solution of the plane problem with con-
stant load suddenly applied on the crack faces. Upper curve: =0.14     

( =0.49), middle curve: =0.48 ( =0.35), lower curve: =1/ 2 ( =0). 



 Bratov V, et al.   Sci China Phys Mech Astron   July (2011)  Vol. 54  No. 7 1315 

 

Figures 5  Relative error of asymptotic series solution of the plane prob-
lem with constant load suddenly applied on the crack faces. (a) Upper 
curve-first term (SIF), lower curve-two first terms; (b) upper curve-two 
terms, lower curve-three terms.

=1/ 3  and =0.25). Character of the curves is close to 
those presented in Figure 1(a). As already discussed above, 
the accuracy of asymptotic approximations is lower in the 
plane case. 

For example, at a point on crack continuation, distant 
from the tip of the crack by 10 mm and for a material with 
longitudinal wave speed c1=5000 m/s, error received using 
the stress intensity factor approximation will exceed 20% 
for times t<400 microseconds. Only for times exceeding 
1200 microseconds the error is below 10%.  

Figure 6 presents the misfit between approximation using 
stress intensity factor or two first terms of asymptotic ex-
pansion eq. (26) and the exact solution of the plane problem 
for a crack loaded by a wave, approaching from infinity 
with a front parallel to the crack (convolution of eq. (24) 
with eq. (21)). Stress distribution inside the wave is given 
by Heaviside step function. The situation is similar to the 
anti-plane problem (Figure 3). 

As demonstrated above in the case of load applied on the 
crack faces (Figures 1(a), 1(b) and 5(a), 5(b)), the approxi-
mation using the first term of the Williams expansion is less 
accurate as compared with the analogues problem where the 
load is created by a passing wave (Figures 3 and 6). This is 
due to the absence of regular terms (terms non-depending  

 

Figure 6  Relative error of asymptotic series solution of the plane prob-
lem with a load given by a wave with constant amplitude, moving from 
infinity with a front parallel to the crack. Upper curve-first term (SIF), 
lower curve-two first terms. 

on the coordinate) in the asymptotic expansion of solutions 
in the case of load created by a falling wave.  

It can be demonstrated that in the case of the load applied 
on the crack faces the same effect can be achieved as a re-
sult of a special choice of a time shape for the load function. 
In order to do this rectangular shaped load pulse with am-
plitude P and duration T (f(t)=P[H(t)H(tT)]) is applied on 
the crack faces. Anti-plane conditions are assumed. In this 
situation for times t>T term independent of the coordinate 
(regular term) is vanishing. Figure 7 plots the misfit be-
tween approximation given by the stress intensity factor and 
the exact solution for the problem. One can see that for t>T 
the accuracy of solution given by stress intensity factor is 
noticeably increased. 

5  Influence of transient stress field on fracture 
in the tip of the crack 

In this section we provide the analysis of influence that the  

 

Figure 7  Relative error of SIF solution of the anti-plane problem with 
constant load of duration T suddenly applied on the crack faces. Upper 
curve, T=100x1/c; lower curve, T=10 x1/c. 
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above contribution of terms following the stress intensity 
factor term in asymptotic expansion into stress field can 
have on critical load amplitudes leading to fracture in the tip 
of the loaded crack. 

In refs. [19–21] criterion for fracture applicable in the 
studied situation of highly dynamic loading conditions was 
proposed 

 
0

1 1
( , )d d ,

t d

c

t

x t x t
d



 




   (29) 

where  stands for incubation time of fracture [21], being 
material property independent of experimental conditions, 
с stands for the ultimate stress of the studied material, 
evaluated in quasistatic conditions, and d stands for charac-
teristic size [21], having a dimension of length and given by 

2 2(2/ ) ( / ),Ic cd K     where KIc is the critical value for 

stress intensity factor evaluated in quasistatic conditions and 
(x,t) is giving normal stress an point x ant time t. x=0 in 
this situation corresponds to the crack tip. Exhaustive in-
formation about ideology and physics behind the incubation 
time fracture criterion and the incubation time can be found 
in the book by Morozov and Petrov [21]. In the same book 
one can find possible experimental schemes that can be 
used in order to evaluate the incubation time. Eq. (29) pro-
vides a possibility to predict moment of time t* when frac-
ture is initiated in the tip of the crack. The same analysis 
can predict critical amplitude for a load applied to the crack. 

Notion of minimal fracturing load pulse will be used be-
low. Under minimum fracturing load pulse we will mean 
load pulse of a given duration with minimum possible am-
plitude resulting in initiation of the studied crack. For any 
load duration it is possible to find corresponding minimum 
amplitude leading to fracture initiation. In some cases frac-
ture will happen with a certain delay (counting from the 
moment of load termination to fracture initiation). This de-
lay cannot exceed fracture incubation time . For short 
pulses (shorter then ) the delay increases if the load dura-
tion is decreased. Increasing the load amplitude while its 
duration is preserved will result in decrease of the fracture 
delay. Load pulse of a given duration that results in initia-
tion of fracture without delay (simultaneously with load 
termination) will be called maximum fracturing load pulse. 
Further increase of the load amplitude while its duration is 
preserved will lead to fracture initiation before the load is 
terminated.  

In order to analyze effect of accuracy of the asymptotic 
representation on the critical load characteristics leading to 
initiation of fracture in the tip of the crack the following 
expression is introduced:  

 3

3

100%i
i

P P
Q

P


   (30) 

iP  is the critical (minimal) amplitude of rectangular shaped 

load pulse initiating fracture in the tip of the loaded crack 
calculated utilizing eq. (29) by using first i terms of the 
asymptotic expansion.  

The solutions presented above do not account for the 
wave cone created at the crack tip: when time t is compara-
ble to time needed for the wave to travel a distance equal to 
structural size d, asymptotic expansion can be only used for 
t>x/c. For t<x/c the wave that is diffracted from the tip of 
the crack has not reached the point x. Thereby, stress in this 
point for t<x/c is given by the stress in the falling wave. 
Thus, accounting for the wave cone, created at the tip of the 
crack will improve the solution. 

Calculations of accuracy of predictions of critical load 
amplitudes for different load durations using different 
number terms of the asymptotic expansion are performed 
for real materials. We will use material properties typical 
for PMMA: 1 1970c   M/C, 2 1130c   M/C, 20c   

MPa, 1.47IcK   MPa 
1/2m ,  30   s. Results of cal-

culations are presented in Figure 8. 
Figure 8 gives Q1 (upper curves) and Q2 (lower curves) 

for rectangular threshold (with minimum fracturing ampli-
tude) load pulse as a function of load duration T. Solid line 
gives a solution received taking the wave cone into account. 
Dashed line solution is received not taking this into account. 
The received results (see Figure 8) indicate that taking into 
account only the first term of the Williams asymptotic ex-
pansion will result in up to 30% error in estimation of am-
plitude for minimum fracturing load pulse. Using the first 
two terms of the expansion drops maximum error below 
10%. 

Figure 9 gives Q1 (upper curves) and Q2 (lower curves) 
for rectangular maximum fracturing load pulse as a function 
of load duration T (or, which is the same in this case, 
time-to-fracture t*). Solid line gives a solution received tak-
ing the wave cone into account. Dashed line solution is re-
ceived not taking this into account. The received results (see  

 

Figure 8  Accuracy of the computed minimum fracturing load pulse 
amplitude for rectangular load pulse as a function of load pulse duration. 
Upper curves-first term of the asymptotic expansion is used. Lower 
curves-first and second terms are used.  
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Figure 9  Accuracy of the computed maximum fracturing load pulse 
amplitude for rectangular load pulse as a function of load pulse duration. 
Upper curves-first term of the asymptotic expansion is used. Lower 
curves-first and second terms are used.  

Figure 9) indicate that taking into account only the first term 
of the Williams asymptotic expansion will result in up to 
200% error in estimation of amplitude for maximum frac-
turing load pulse. Using the first two terms of the expansion 
significantly reduces the error. 

6  Conclusions 

As clearly demonstrated by previous examples, behavior of 
asymptotic representations of stress-strain fields in a vicin-
ity of a crack tip in dynamic problems is characterized by 
substantial non-uniformity. Obviously the accuracy of rep-
resentation using just stress intensity factor in dynamic 
problems cannot be sufficiently increased by introduction of 
special “dynamic correction”, even time dependent. To 
achieve a correct solution in dynamic conditions one should 
account terms of the Williams asymptotic expansion fol-
lowing the SIF term. 

Very interesting observations through examining de-
pendency of accuracy SIF stress field approximation can be 
made in dynamic problems on Poisson's ratio of studied 
material (Figure 4). One can note that for incompressible 
materials (v=1/2) infinite number of terms in Williams as-
ymptotic expansion should be taken in order to obtain rea-
sonable coincidence between approximation and reality. It 
is demonstrated (Figure 4) that the larger the Poisson's ratio 
of material, the worse the approximation using the SIF. For 
a material with v=0.48 the misfit between real stress and 
stress prescribed by SIF square root singularity exceeds 
20% even for times c1t/x1=1000. 

Presented results demonstrate the framework for prob-
lems where the SIF can be used to describe stress-strain 
fields surrounding the tip of a dynamically loaded crack. It 
is shown how a load (both the way a load is applied and its 
time shape), material properties (Poisson’s ratio) and ex-
perimental conditions (plane or anti-plane problem) can 
affect accuracy of asymptotic approximations for stress- 
strain field in a vicinity of a crack tip. It is shown that in 

many cases, when the SIF square root singular field can not 
provide a correct approximation of dynamic stress field 
surrounding the crack tip, accounting one or two additional 
terms following the SIF in power expansion can greatly 
improve the situation. At the same time there are situations 
when an infinite number of terms is needed in order to ap-
proximate solutions in an accurate way.  

Although presented solutions refer to stationary dynami-
cally loaded cracks, we also want to discuss applicability of 
SIF approximation of singular stress field surrounding the 
crack tip in problems with propagating cracks. As discussed 
by Morozov and Petrov [21], the closer the crack tip speed 
is approaching the Rayleigh wave speed CR, the worse the 
approximation given by the SIF for stress field in a vicinity 
of the tip of the crack is. Therefore, for moving cracks 
speed is another important factor that is affecting the SIF 
approximation accuracy. Having this in mind one may wish 
to revise Freund’s solution for the limiting speed of crack 
propagation [22] for mode I cracks and solutions for per-
mitted speeds for shear cracks [4,22–25]. Though we are 
unlikely to question the fact that CR is the limiting speed for 
mode I cracks in problems without local scale and micro-
structure, as there are other physical and empirical reasons 
why mode I cracks cannot propagate with greater speeds, 
obviously, revision of solutions for shear crack propagation 
can help better understand recent experiments on ultrasonic 
dynamic cracking [26]. 

Hopefully demonstrated exact solutions and comparisons 
of exact solutions to SIF prescribed singular stress fields 
will help understand the mismatch between SIF solutions 
and more exact solutions, observed by multiple researchers. 

This work was supported by RFBR research grants, Russian Federal pro-
grams, and academic programs of the Russian Academy of Sciences. 
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