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Russia

E-mail: Vladimir@bratov.com

Abstract. The paper is discussing problems connected with embedment of the incubation
time criterion for brittle fracture into finite element computational schemes. Incubation time
fracture criterion is reviewed; practical questions of its numerical implementation are extensively
discussed. Several examples of how the incubation time fracture criterion can be used as fracture
condition in finite element computations are given. The examples include simulations of dynamic
crack propagation and arrest, impact crater formation (i.e. fracture in initially intact media),
spall fracture in plates. Applicability of the approach to model initiation, development and
arrest of dynamic fracture is claimed.

1. Introduction

Numerical methods are of a vital importance while solving problems of dynamic fracture
mechanics. First of all this is connected to the fact that an overwhelming majority of problems of
dynamic fracture are impossible to solve analytically. Framework of dynamic problems allowing
analytical solution is limited to few classical solutions (e.g. see the book of Freund [1] for
exhaustive collection of these solutions). Turning to problems of dynamic fracture evolution
(fracture development and arrest) a possibility to construct analytical solution is completely
vanishing (not accounting for couple of solutions for steady-state dynamic crack propagation).

Central issue while solving problems of dynamic fracture (no matter, numerically or
analytically) is rupture criterion to be used in order to assess if fracture should happen at a
given state of a system. For several decades it is known that classical fracture criteria (criteria
based on the idea of the ultimate stress for intact media and on the idea of the critical stress
intensity factor for cracked bodies) are not able to provide satisfactory coincidence with known
experiments (see, e.g. [2]). Moreover, it is easy to show that these criteria contradict the common
sense being applied to transient problems (as discussed in [3]).

In [2–4] a new criterion based on the introduced concept of the incubation time of a fracture
process was proposed in order to predict conditions of initiation of brittle fracture in solids
undergoing dynamic impact loading. Later in this paper the incubation time fracture criterion
(ITFC) will be discussed in detail. Here some distinguishing properties of the ITFC that make
it especially attractive to be embedded into numerical computational schemes are outlined.

In this connection the important feature of the incubation time fracture criterion is that it
is able to predict fracture initiation conditions with reliability and correctness in “static” case
of “slow” changing loads and “slow” changing geometry as well as in “dynamic” case of high-
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rate loads and “fast” changing geometry (see, e.g., [2,3]). Moreover, the criterion is supplying a
smooth transition between these two cases [5]. The result is that using the approach one does not
need to care about time scale of the problem the criterion is giving correct predictions in a wide
range of loading rates from static problems to the extreme dynamic ones. Even distinguishing
between “static” and “dynamic” situation is not obligatory needed anymore, though the ITFC
itself is providing a perfect possibility to do this.

It is easy to show (see e.g. [6]) that for “static” problems with “slow” changing loads and
“slow” changing geometry the ITFC is coinciding with well-known Neuber–Novozhilov fracture
criterion [7,8]. It can be proven [3,6,9] that with the right choice of spatial parameter d, used in
criterion formulation, Neuber–Novozhilov criterion is giving predictions coinciding with critical
tensile stress (ultimate stress) criterion in the case of rapture of initially intact media and the
critical stress intensity factor (Griffith–Irwine, KIC) criterion in the case of rupture in a tip of a
macroscopic crack. The important outcome is that the criterion is governing two cases that are
normally treated separately in a single (and rather simple) rupture condition it can be applied to
predict brittle fracture of materials with arbitrary size of defect, from intact undamaged media
to media with macroscopic cracks. The Neuber–Novozhilov criterion is also providing smooth
transition between these two cases. As a result the criterion is perfectly applicable to fracture
problems with fracture surface geometry that is not known a priori. In such problems fracture
in initially intact material can be initiated somewhere in a body and, as it evolves, transform
into a macroscopic crack. The whole fracture evolution can be predicted with a single fracture
criterion.

In a big number of works (see, e.g., [3, 5, 10]) authors, applying the introduced ITFC to
predict critical fracture conditions in different dynamic fracture experiments (e.g., [11]) proved
that the ITFC can be successfully used to predict initiation of brittle fracture appearing as a
result of high-rate deformation applied somewhere in a body. In the same works a material
parameter τ—the incubation time of brittle fracture, constituting the essence of the ITFC and
characterizing the temporal dependence of media strength was computed for many of widely
used materials.

Lately an approach making it possible to embed the ITFC into numerical computational
schemes based on finite element method (FEM) was developed [16,17]. Utilizing this approach
simulation of several different experiments on dynamic impact fracture caused by high-rate
loads was performed [16, 18]. These works testify that the ITFC used as a rupture criterion in
FEM numerical simulations is able to predict correctly and precisely experimentally observed
phenomena of dynamic fracture initiation, evolution and arrest.

As a matter of fact, not including the ITFC and approaches based on classical fracture criteria
that are obviously inapplicable to predict high-rate fracture, nowadays only one approach exists
that is pretending to correct prediction of dynamic fracture. This approach is originating from
the works of Freund [19–21] and was later developed by Rosakes. It is based on an assumption
that fracture criterion in a tip of a crack can be received as a function of stress intensity factor
rate: Kd(t) ≤ Kd

C
(K̇(t)), with Kd being the dynamic stress intensity factor, changing in time,

Kd
C

being its critical value and dot denoting time derivative. As discussed by Bratov and
Petrov [16], this approach in many cases is contradicting the common sense and is applicable to
predict dynamic fracture initiation (not even mentioning high-rate fracture evolution) in a very
limited set of problems with strict requirements on material, loading history, fractured sample
geometry etc.

The main idea of this paper is to convince the reader that the ITFC is the most promising,
precise and convenient among available criteria suitable for embedding into numerical codes
in order to predict dynamic fracture. The paper is also giving exhaustive information about
the ITFC in connection with possibilities of its numerical implementation into FEM. The main
problems of this implementation are discussed and the algorithm in order to embed the ITFC
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into FEM is explicitly given.

2. Incubation time fracture criterion

Incubation time criterion for brittle fracture at a point x at time t reads as [2–4]:

1

τ

∫
t

t−τ

1

d

∫
x

x−d

σ(x′, t′)dx′dt′ ≥ σc, (1)

where τ is the microstructural time of a fracture process (or fracture incubation time) a
parameter characterizing the response of the studied material to applied dynamic loads (i.e.
τ is constant for a given material and does not depend on problem geometry, the way a load is
applied, the shape of a load pulse and its amplitude). d is the characteristic size of a fracture
process zone and is constant for the given material and the chosen scale level. σ is normal stress
at a point, changing with time and σc is its critical value (ultimate stress or critical tensile stress
found in quasistatic conditions). x′ and t are the local coordinate and time.

Assuming

d =
2

π

K2

IC

σ2
c

, (2)

where KIC is a critical stress intensity factor for mode I loading (mode I fracture toughness),
measured in quasistatic experimental conditions. It can be shown that within the framework of
linear elastic fracture mechanics for the case of fracture initiation in the tip of an existing crack,
(1) is equivalent to

1

τ

∫
t

t−τ

KI(t
′)dt′ ≥ KIC . (3)

Condition (2) arises from the requirement that (1) is equivalent to Irwin’s criterion (KI ≥ KIC),
in the case of t → ∞.

Once again it should be noticed that for slow loading rates and, hence, times to fracture that
are much bigger than τ , condition (3) for crack initiation gives the same predictions as Irwins
criterion of a critical stress intensity factor. In the case when the stress field is not singular in
the vicinity of point x (locally intact material) and under condition of quasistatic load applied
to the media, condition (1) is reduced to critical tensile stress fracture criterion. It should be
outlined that (1) in the quasistatic case is equivalent to critical stress intensity factor criterion
under assumption that square root asymptotic solution is valid in the vicinity of a singular point
x. In the case of a singular field that is not controlled by a square root singularity (for example
asymptotic field appearing in the tip of an angular notch), when Griffith-Irwin critical stress
intensity factor criterion is not applicable, condition (1) can be successfully used to predict
fracture in such a singular point [22].

Thereby, (1) automatically ensures correct fracture prediction in a very wide range of
quasistatic problems with materials fracturing following brittle scenario. It has been proven
in multiple works (see, e.g., [2–5, 10, 23]) that for dynamic problems (1) (under condition that
incubation time τ is correctly identified for the studied material) is correctly predicting stressed
state at the moment of initiation of brittle rupture (in the case of fracture of initially intact
media, as well as in the case of initiation of macroscopic crack). First of all this concerns
problems with loads applied at high and ultra-high rates.

In this work it will be demonstrated that condition (1) can be also used to predict evolution
of quasi-brittle fracture (fracture and fragmentation of initially intact media, growth and arrest
of macroscopic cracks etc.).
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3. Numerical implementation

Several questions are to be discussed in connection to FEM implementation of the ITFC:

• FE mesh. Additional requirement to FE mesh to be used in simulation with the ITFC
utilized as fracture criterion consists in limitation on the size of finite elements in a vicinity
of points where rupture is possible. Obviously, size of an element in this region should not
exceed d (see formula (2)). Otherwise it will not be possible to perform sufficiently precise
spatial integration in fracture condition (1). Also, meshing the sample, one should keep in
mind that material should be separated once fracture criterion is executed somewhere in
the sample. This applies both to the choice of mesh in problems without adaptive meshing
(mesh is not changing throughout the simulation) and the choice of adaptive mesh that can
depend on current geometry of fracture zone and other factors.

• Time step. In order to have a possibility to perform sufficiently precise time integration in
(1) one should require that the time integration step is small as comparing to incubation
time τ of the material modeled.

• Control of fracture criterion (1) execution. Implementation of control of fracture condition
execution does strongly depend on a problem to be modeled. In some problems (for example,
in the majority of problems on propagation of a macroscopic crack in unbounded media)
fracture is possible only in a tip of an existing crack. In this case it is sufficient to keep track
of execution condition (1) only in a single point (the tip of the crack). In other problems (for
example, in the majority of problems on fracture of initially intact media) it is necessary
to trace execution of (1) in rather extent zone or even in the whole modeled body. Under
condition that the zone where implementation of (1) should be traced is defined and also
that time step and mesh are correctly chosen, calculation of the left side in (1) does not
make a big difficulty. In the examples presented later in this paper execution of (1) is
controlled by an external program after every computational time step. However, with the
lapse of time it is planned to create special elements for commercial FEM packages ( [24,25],
etc.) with criterion (1) being explicitly embedded into their formulation. Creation of such
elements will considerably simplify the problem and will give a possibility to completely
automate numerical simulations of brittle fracture.

• Spatial size of defect increment (2d problems). Incubation time theory for brittle fracture
[4,23] is introducing linear size corresponding to an elementary cell of fracture on a chosen
scale level. This size can also be interpreted as a typical size for the defect that one can
call fracture on the chosen scale level. This size d depends on modeled material and the
scale level and can be computed using (2). It makes sense to consider that once (1) is
implemented in some point of the modeled body, fracture surface should be increased by
the size of the elementary fracture cell d. In this connection having zones where fracture is
possible meshed by elements sized d seems to be a reasonable choice.

• Creation of a new surface. In finite element formulation there exist several possibilities
to create a new surface appearing as a result of material fracture. In the case of a crack
extending along symmetry axis (in problems with symmetry) node release technique can
be utilized (see, e.g., [16]). In problems without remeshing when fracture geometry is
changed, node splitting technique or technique implying removal of restrictions on nodal
dimensions of freedom (dof’s) [18] can be used. In other situations one can use schemes
assuming remeshing of the modeled body when fracture zone is changed (incremented). This
approach is the most universal but at the same time the most difficult in implementation
(apart from remeshing one should care about remapping of nodal values (displacements,
velocities, accelerations) to new mesh). Remeshing and remapping also normally require
substantial computational expense. The conclusion is that for every new problem technique
to create a new surface should be specially chosen having in mind expense connected with
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Table 1. Properties of Homalite-100 used in numerical simulations.

Density ρ, kg/m3 1230
Young’s modulus E, MPa 3900
Poisson’s ratio ν 0.35
Critical stress intensity factor KIC , MPa

√
m 0.48

Ultimate tensile stress σc, MPa 48
Incubation time of fracture τ , µs 9

model development and time needed for computations.

4. Examples

4.1. Dynamic crack propagation
To check the applicability of the criterion (1) to predict dynamic crack propagation, an attempt
was made to simulate the classical fracture dynamics experiments reported by Ravi-Chandar
and Knauss [11]. Detailed description of the model used in simulations and results of simulation
of these experiments using FEM with the ITFC as a condition for crack extension can be found
in [16]. Here some basic principles and main results are presented.

In these experiments [11] a rectangular sample with a cut simulating a crack is loaded by
applying an intense load pulse to the crack faces. The sample behavior is described by equations
of linear elasticity everywhere but the path of the crack, where fracture condition is given by
(1). ANSYS [25] finite element package is used in order to solve linear elastic equations while
implementation of (1) is controlled by an external program after each substep. The problem is
symmetrical and the path of the crack is following the line of symmetry. This gives a possibility
to model only half of the sample.

Nodes along the crack path are subjected to symmetrical boundary conditions up to the
moment when the condition (1) is satisfied at a particular node (node movements in the vertical
direction are restricted). At this moment, the restriction on movement of the particular node
is removed and a new surface is created. The technique used is similar to the node release
technique.

The size of elements along the crack path was taken to be exactly d (see (2)). Small elements
with sizes equal to d are placed adjacent to the crack path to provide the needed accuracy of
computation. Distant elements are larger in order to minimize the computational time and
expense.

Material parameters typical for Homalite-100, used in the experiments of Ravi-Chandar
and Knauss, were used in the calculations. These parameters are presented in table 1. The
microstructural time of the fracture process, τ , for Homalite-100 was found by Petrov et al. [5]
from analysis of experiments by Ravi-Chandar and Knauss [11]. The values of the critical stress
intensity factor and the ultimate tensile stress gives a value for d. It appears to be 0.1 mm for
Homalite-100 on a laboratory size scale.

Time profile of the load applied on the cut faces can be approximated by two consequently
following trapezoids. Unfortunately, in the paper by Ravi-Chandar and Knauss there was
no information about amplitude of this load. Performing multiple ANSYS computations for
different amplitudes it was found that amplitudes around 5 MPa result in crack extension
histories very close to those observed by Ravi-Chandar and Knauss [11]. In figure 1 the
computational result for A = 5.1 MPa is compared to the experiments reported by Ravi-Chandar
and Knauss [11].
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Stress intensity factor (SIF) KI is a key parameter, which determines stress fields around
crack tip within the framework of classic linear fracture mechanics. A corresponding classic
static fracture criterion is naturally extended to the case of dynamic crack propagation [12]:

KI(t, P (t),Ω(t), L̇) ≤ KId( ˙KI(t), T, ...), (4)

In (4) formula P (t) is time-dependent loading, Ω(t)—current geometry of the specimen,

L(t)—crack length which changes with time, ˙L(t) = dLdt is current crack velocity. The right
part of the expression (1) is the function called dynamic fracture toughness which is usually

regarded as a material function of loading rate ˙KI(t) =
dKI

dt
, temperature T and other material

properties. The right part of the expression (4) is supposed to be defined from experiments
a priori. Such approach is widely spread in the field of dynamic fracture research. However
multiple experimental results (e.g. obtained in works [11]) impugn analyses based on criterion
(1) and existence of crack velocity stress intensity factor dependence in particular. In [11] Ravi-
Chandar and Kauss have shown that almost constant values of crack speed may correspond to
significant change of SIF in case of explicitly dynamic sample loading. The authors of these
papers supposed energy flux to the crack tip to be unrelated to crack speed, but to influence
fracture surface pattern. Thus conclusions made in [11] contradict commonly applied approach
based on linear fracture mechanics postulates and condition (1).

On the other hand many experimental data confirm existence of stable dependence of crack
velocity ˙L(t) on crack length L(t) (which can be regarded as dependence on SIF KI ∼

√
L).

This effect was observed in papers [13] and [14] where experiments on thin PMMA plates
are described. The experimental scheme involved quasistatic stretching of samples with an
initial crack which resulted in crack acceleration followed by dynamic propagation of the crack
through whole sample. Generally speaking the crack behavior observed in [13] and [14] does
not contradict principles laying beneath condition (4) however one will encounter problem of
determination of a functional from right part of (4) this procedure might be very expensive and
complicated. Besides this classic fracture criteria similar to (4) do not consider instabilities in

dependencies of fracture toughness KId on ˙K(t).
Comparing of experiments carried out in different conditions but on the same material lets

us conclude that critical stress intensity factor cannot be treated as an invariant with respect to
history and conditions of loading material property which completely defines dynamic behaviour
of the crack.

Classic experiments by Finberg [13] were simulated using incubation time approach. The
investigators managed to monitor position of track tip at each moment of time and therefore
had an opportunity to calculate crack velocity. Figure 2 depicts dependence of crack velocity on
length o the crack. Numerical results fit experimental data well [15] and therefore incubation
time fracture criterion is proven to be an appropriate tool for fracture simulation in a wide range
of loading conditions—from quasistatic to explosion-like loading conditions.

4.2. Impact crater formation (fracture of initially intact media)
In this section an attempt to incorporate incubation time approach into finite element (FE)
code and to simulate conditions of satellite SMART1 lunar impact conducted by ESA year
2006 [26,27] is presented. Aim of the simulation is to compare dimensions of crater created due
to SMART1 contact to the moon surface to results received using FE method utilizing the ITFC
as the critical rupture condition.

The traditional way to create new surface in FE formulation is associated with splitting of
existing nodes. Using this approach is reasonable in most cases, though this normally requires
remeshing and remapping, that are rather time consuming procedures. For the studied problem
the situation is different. To guarantee correct integration in (1) one should use small (as
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Figure 1. Crack extension history. Com-
parison of simulation results to experimental
points received in [11].

Figure 2. Crack velocity versus crack
length.Comparison of simulation results to
experimental data received in [13].

comparing to τ) time steps. Thus the solution is resulting in long series of tiny substeps.
Solution (convergence) on every substep is achieved comparably fast FE solver is almost not
iterating. It was found, that in this case it is more effective to use multiple nodes in the same
location from the beginning, rather than split the node in question. Each element the full model
is constructed of, is not sharing nodes with other elements.

2D problem with rotational symmetry is solved. Quadratic 4-node elements are used.
Dimensions of every element is exactly d times d (where d is given by (2)). Obviously, 4
nodes have the same location for inner points of a body and 2 nodes have the same location
for the points belonging to the boundary. These nodes originally have their DOF’s coupled.
This results in exactly the same FE solution before the fracture condition is implemented in
a respective point as if elements had shared nodes. When the fracture condition is fulfilled,
restriction on nodes DOF’s is removed a new surface is created. This is done automatically by
FE code after every substep.

Figure 3 gives a schematic representation of internal points of a body. Originally all 4 nodes
sharing the same location have all of their DOF’s coupled. Condition (1) for this point can be
written:

1

τ

∫
t

t−τ

σii(t
′)dt′ ≥ σc, (5)

where i assumes values 1 and 2. Repeating indices do not dictate summation in this case.
Spatial integration is removed, because the stress in the respective direction calculated by FE
program is already a mean value over size d (since d is the element size being used). If (4) is
fulfilled for σ11 and σ22 then displacements of nodes 1,2,3 and 4 on figure 3 get uncoupled. If
(4) is fulfilled for σ11, two new couple sets consisting of nodes 1, 2 and 3,4 are created. If (4)
is fulfilled for σ22, new couple sets are created for nodes 1, 3 and 2,4. For later times condition
(4) in applicable direction is traced for newly created couple sets separately. Contact between
separated fragments is not modeled which is a simplification of the simulation.

The problem is solved for half-space. Half-space representing the moon had following material
properties: σc = 10.5 MPa, KIC = 2.94 MPa

√
m, τ = 80 µs, E = 60 GPa, ρ = 2850 kg/m3,

ν = 0.25 typical for earth basalt. This results in d = 5cm. Half-space is impacted by a cylinder
with diameter of 1 meter and height of 1 meter. Density for the cylinder is chosen so that its
mass is the same as the one of SMART1 satellite. We suppose material of cylinder is linear
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Figure 3. Model consisting of elements
without shared nodes.

Figure 4. Locations of ruptured nodes.

elastic and has no possibility to fracture. Elastic properties are: E = 200 GPa, ν = 0.32, typical
for steel. SMART1 satellite had a form close to cubic with side of 1meter and had a mass of
366 kg. SMART1 impacted the moon surface at a speed of approximately 2000 m/s. In FE
formulation the cylinder was given an initial speed of 2000 m/s prior its contact to the half-space
boundary. Size of the sample, representing the half-space is chosen from the condition that the
waves reflected from the sample boundaries are not returning to the region where the crater is
formed in the process of the simulation. The total of 17328 nodes and 17252 elements were used
in FE model. Time step was chosen to be equal to time needed for the fastest wave to pass the
distance equal to d.

ANSYS finite element package (ANSYS User’s Guide [25]) was used to solve the stated
problem. Control of the fracture condition (4) fulfillment in all of the sample points and new
surface creation when rupture criterion is implemented was carried out by a separate ANSYS
ADPL subroutine.

In figure 4, locations of nodes where the fracture occurred are marked. This gives a possibility
to assess dimensions of crater that is formed after the SMART1 impact. Damaged zone is found
to be about 10 meters in diameter and about 3 meters deep. Zone where the material is fully
fragmented (crater formed) can be assessed having 7–10 meters in diameter and 3 meters deep.
This result is coinciding with ESA estimations of dimensions of crater formed due to SMART1
impact [26,27].

Same approach and techniques are successfully used in order to simulate spall in brittle media
and impact of ceramic plates by steel plunger.
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5. Conclusions

It was demonstrated that the area where the incubation time criterion for brittle fracture can
be successfully used in order to simulate fracture is rather extent. An overwhelming majority
of practical problems in dynamic fracture cannot be solved analytically and require numerical
methods to be used in order to receive the solution. In this connection, the incubation time
approach had significant advantages—it is applicable to predict both in static and dynamic
fracture. Thus, there is no necessity in having different fracture criteria for different load rates.
It was demonstrated that the ITFC embedded into finite element code is giving a possibility to
predict initiation, development and arrest of dynamic fracture.

All this gives a reason to recommend the ITFC to be included into commercial and research
FE codes as standard fracture criterion to be utilized while modeling structures that can undergo
loads of the dynamic range.
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