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Preface

Main progress in fracture mechanics was attained in the middle of 20th cen-
tury following formulation of well-known Griffith-Irwine fracture criterion.
At the second part of the 20th century all basic problems of static fracture
mechanics were solved. A substantial contribution to this development
was made by Russian scholars (N. A. Zlatin, B. V. Kostrov, E.M. Morozov,
L. V. Nikitin, V. S. Nikiphorovski, V. Z. Parton, L. I. Slepjan, V. E.Fortov,
G. P. Cherepanov, G. I. Barenblatt, E. I. Shemyakin, V. M. Titov, L. A. Mer-
zhievsky, V. F. Kuropatenko, G. I. Kanel and others) and by foreign scien-
tists (J. D. Achenbach, W. T.Ang, K. B.Broberg, J. W. Dally, J. D. Eshelby,
L. B. Freund, J. F. Kalthoff, W. G. Knauss, K.Ravi-Chandar, D. A. Shockey,
A. Shukla, A. J.Rosakis, M. L. Williams and others). To a great extent,
the progress in the field is due the achievements of the St. Petersburg—
Leningrad Scientific School of Mechanics by G. V. Kolosov, V.V. Novozhilov
and L. M. Kachanov. Contributions of this institute include the establish-
ment of the fundamental principles of fracture analysis as a process, occur-
ring at different scale levels.

However, despite such a progress in the development of the science of
fracture, many important problems remain. One of the most challenging
of these is dynamic fracture. This is usually regarded as a rupture of
material under intense hi-rate loading taking place within relatively short
time period.

In this book a new phenomenological approach in studies of brittle frac-
ture initiation, development and arrest under shock pulses is presented.
The approach was developed in the late 1990’s and the beginning of 2000’s
and is based on invariant parameters independent of the mode and history
of fracture. Demand for a new approach in fracture dynamics was imposed
by impossibility to explain and predict experimentally observed peculiar-
ities of dynamic fracture utilizing classical approaches in fracture. New

11
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approach provides an opportunity to predict fracture of both ’intact’ media
and media having macrodefects such as cracks and sharp notches. A qual-
itative explanation is thus obtained for a number of principally important
effects of high-speed dynamic fracture that can not be clarified within the
framework of previous approaches. We show that it is possible to apply
this new strategy to solve the problems of dynamic rupture, erosion, crater
formation, crack extension and arrest, etc. By extending well-known classi-
cal principles of Linear Elastic Fracture Mechanics, the suggested approach
conserves the intrinsic ’industrial’ character of the analysis and can be con-
sidered as a basis for new testing methods and for certification of dynamic
strength characteristics of structural materials.

The method is very convenient to be embedded into numerical com-
putational schemes in order to predict dynamic fracture development and
arrest.

Moreover, the approach turned out to be very useful in other areas in
order to simulate and predict fast transient processes. Examples included in
the book cover dynamic yielding, electric breakdown, cavitation in liquids,
detonation of gaseous media.

Specialists can use the methods described in this book to determine crit-
ical characteristics of dynamic strength and optimal effective fracture con-
ditions for rigid bodies. This book can also be used as a special educational
course for guidance on the deformation of materials and constructions, and
fracture dynamics.

We, the authors, are grateful to Prof. A. A. Utkin, Dr. A. V. Kashtanov,
Prof. R. V. Goldstain, Prof. P. St̊ahle, Dr. A. Zhivkov, Prof. A. M. Bragov,
Prof. V. I. Smirnov, Prof. S. A. Atroshenko, Dr. A. A. Gruzdkov, Ms.
E. Sitnikova, Mr. G. A. Volkov, Mr. L. M. Isakov and all our colleagues
for support, advice and valuable discussions we had while preparing this
book. We are specially thankful to Ms. Natalia Bratova for inestimable
help while editing the book.



Chapter 1

Basic principles of
quasistatic fracture mechanics

Introduction to quasistatic fracture mechanics. Brittle
fracture. Surface energy. Classical criteria for brittle
fracture. Griffith—Irwine approach

1.1 Griffith approach

Studies in fracture date back to the ancient times. In this connection one
can mention giant constructions of Tan dynasty in Ancient China, the leg-
endary Semiramida’s gardens (the first example of hanging structures) or
the Egyptian Pyramids. Obviously people were aware of the secrets of
strength even at these early times. The experiments of Galilei (Galilei,
1683) and Leonardo da Vinci (da Vinci, unknown) raised the problem
of how defects can influence strength of a structure. Later investigations
by famous scientists (E. Mariotte (Mariotte, 1686) in the 17th century, C.
Coulomb (Coulomb, 1776) in the 18th and O.Mohr (Mohr, 1906) in the
19th century) contributed to development of the strength theory. Finally,
the basis of modern fracture was formed in fundamental works of A. Griffith
(Griffith, 1920) in 1920 and J. Irwin (Irwin, 1948) in 1948.

In (Griffith, 1920) A. Griffith introduced a new concept into fracture
theory — surface energy of a fracture process. This energy is proportional
to the surface appearing as a result of a fracture process with proportional-
ity constant being the property of the fractured material. This idea makes it
possible to use energy balance as a critical condition for crack propagation.

Consider the simplest example: elastic plane with a central crack with
length 2a (Fig. 1.1) is uniformly stretched in direction perpendicular to the
crack direction. Following Griffith one can construct critical condition for

13



14 Dynamic Strength of Continuum

Fig. 1.1.

crack advancement.

a a + ∆a

Elastic energy U U + ∆U
Applied forces work A A + ∆A

Surface energy Π Π + ∆Π

In compliance with Griffith’s idea:

∆Π = γ∆Σ,

where ∆Σ is the new surface formed as a result of the crack advancement
and γ is the specific surface energy that is constant for a given material.

Following Griffith one can formulate condition for crack advancement:
if the functional U −A+Π is minimized for initial geometry then the crack
does not propagate. Obviously this occurs when

∆U − ∆A = −∆Π. (1.1)

Therefore, one can determine the critical situation and find the critical
load p, leading to crack extension from the following condition:

∆U + ∆Π = ∆A. (1.2)

Griffith (Griffith, 1920) conducted his proof for two confocal ellipses,
with inner ellipse representing the crack and the outer one representing
loaded external boundary. Having the energy balance derived, the semiaxes
of the outer ellipse were extended to infinity.

Here a modified proof invented by S. Nazarov (see ex. Morozov, 1984)
is presented.
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Consider a convex domain Ω0 having a smooth boundary. Ω0
D stands

for its homothetic dilatation.

Ω0
D =

{

x, y ∈ R2;
x

χ1(D)
,

y

χ2(D)
∈ Ω0

}

,

χi(D) = D + O(1), D → +∞,

M = {x, y ∈ R2; |x| ≤ a, y = 0}.

Let D be large enough to hold M ∈ Ω0
D and ΩD = Ω0

D\M . Finally

−−→
σ(n)

∣

∣

∣

∂Ω0
D

= p$n (1.3)

and

σyy

∣

∣

M
= σxy

∣

∣

M
= 0.

Plain strain conditions are supposed. $uD denotes the solution of Lame’s
equations within ΩD and satisfying boundary conditions (1.3). This solu-
tion can be presented as a sum:

−→uD = $v(x, y) + $w(x, y) + $vD(x, y), (1.4)

where $v(x, y) corresponds to dilatation of Ω0
D (domain without a crack):

$v = p
(1 − 2ν)(1 + ν)

E
(x, y), (1.5)

σxx($v) = σyy($v) = p; σxy($v) = 0,

exx($v) = eyy($v) = p
(1 − 2ν)(1 + ν)

E
; exy($v) = 0.

Then, $w(x, y) is the solution of Lame’s equations in R2\M with boundary
conditions

σyy($w)
∣

∣

M
= −p; σxy($w)

∣

∣

M
= 0;

σij($w) = O(r−2), r → +∞, r =
√

x2 + y2.

Finally, the third summand in (1.4) can be estimated (see V. Mazja and
B. Plamenevsky (Mazja, Plamenevsky, 1978) by:

|σij($vD)| ≤
C

D

{

1

D
+

max[1, ((|x|− a)2 + y2)−1/4]

(r + 1)2

}

. (1.6)
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Therefore:
∫

Ω0
D

σij($vD)eij($w)dΩ0
D ≤

≤
C

D

∫

Ω0
D

1

(r + 1)2

(

1

D
+

max[1, ((|x|− a)2 + y2)−1/4]

(r + 1)2

)

dxdy = O

(

1

D

)

.

(1.7)

Denoting

U0 =
1

2

∫

Ω0
D

σij($v)eij($v)dΩ0
D,

A0 = p

∫

∂Ω0
D

$n$vd∂Ω0
D,

Aa = p

∫

∂Ω0
D

$n$vd∂Ω0
D + p

∫

∂Ω0
D

$n$wd∂Ω0
D + p

∫

∂Ω0
D

$n$vDd∂Ω0
D,

A0 = Aa = 0, when x, y ∈ M

(1.8)

one can receive:

Ua =
1

2

∫

ΩD

σij($uD)eij($uD)dΩD = U0 +
1

2

∫

ΩD

σij($vD)eij($vD)dΩD+

+
1

2

∫

ΩD

σij($w)eij($w)dΩD +
1

2

∫

ΩD

σij($v)eij($w + $vD)dΩD+

+
1

2

∫

ΩD

σij($w)eij($v)dΩD +
1

2

∫

ΩD

σij($w)eij($vD)dΩD+

+
1

2

∫

ΩD

σij($vD)eij($v)dΩD +
1

2

∫

ΩD

σij($vD)eij($w)dΩD =

= U0 +
1

2

∫

ΩD

σij($vD)eij($vD)dΩD +
1

2

∫

ΩD

σij($v)eij($w + $vD)dΩD+

+
1

2

∫

ΩD

σij($w)eij($w)dΩD +
1

2

∫

ΩD

σij($vD)eij($w)dΩD.

Here the summands were merged using the Betti’s formula. Recollecting



Basic principles of quasistatic fracture mechanics 17

(1.6) and (1.7) one can obtain:

Ua = U0 +
1

2

∫

ΩD

σij($w)eij($w)dΩD +
1

2

∫

ΩD

σij($v)eij($w +$vD)dΩD +O

(

1

D

)

.

(1.9)
Using the Green’s formula one can write:

∫

ΩD

σij($v)eij($w−$vD)dΩD =

∫

Ω0
D

−−→
σ(n)($v)($w+$vD)d∂Ω0

D−2

a
∫

−a

−−→
σ(n)($v)($w+$vD)dx.

Besides that

Aa − A0 = p

∫

∂Ω0
D

$n$wd∂Ω0
D + p

∫

∂Ω0
D

$n$vDd∂Ω0
D =

∫

∂Ω0
D

−−→
σ(n)($v)($w + $vD)d∂Ω0

D,

−−→
σ(n)($v) +

−−→
σ(n)($w)

∣

∣

|x|≤0,y=0
= 0,

a
∫

−a

−−→
σ(n)($vD)dx = O

(

1

D

)

.

Summarizing one can obtain:

Ua = U0+
1

2

∫

ΩD

σij($w)eij($w)dΩD+Aa−A0−2p

a
∫

−a

wydx+O

(

1

D

)

. (1.10)

And finally:

1

2

∫

ΩD

σij($w)eij($w)dΩD =

∫

∂Ω0
D

−−→
σ(n)($w)$wd∂Ω0

D −
a
∫

−a

−−→
σ(n)($w)$wdx =

= p

a
∫

−a

pwydx + O

(

1

D

)

,

(1.11)

−−→
σ(n)($w)

∣

∣

M
= −p$j.

It should be noted that when D → +∞

1

2

∫

R2\M

σij($w)eij($w)dΩ = p

a
∫

−a

wy(x, y)dx. (1.11′)
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Joining (1.11) and (1.10) whilst D → +∞ one can obtain:

(Ua − U0) − (Aa − A0) = −p

a
∫

−a

wy(x, y)dx. (1.12)

The function $w(x, y) is the solution of the first basic problem of the
crack theory. It reads:

2µwy

∣

∣

|x|≤0,y=0
= 2(1 − ν)p

√

a2 − x2.

This solution will be received later.
Using the solution one can rewrite (1.12) to obtain the expression to

calculate the critical load to be applied in order to advance the crack:

(Ua − U0) − (Aa − A0) = −
(1 − v2)p2a2π

E
. (1.13)

The energy balance condition reads:

∆U − ∆A + ∆Π = 0 or
dA

da
−

dU

da
=

dΠ

da
.

Besides that:

∆Π = 4γ∆a. (1.14)

Then

(1 − v2)p22aπ

E
= 4γ (1.15)

or

p2
cr =

2γE

πa(1 − v2)
. (1.16)

1.2 The first basic problem of the crack theory

Consider a plane strain problem for an elastic plane weakened by a crack
{|x| ≤ a, y = 0} loaded on its faces by uniformly distributed pressure p.
Using Kolosov’s formulas (see, e.g., Muskhelishvili, 1966) one can write:

σxx + σyy = 4Reϕ′,

σyy − σxx + 2iσxy = 2(z̄ϕ′′ + ψ′).
(1.17)
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Fig. 1.2.

Due to the symmetry of the problem the simplified Westergaard method
(Westergaard, 1939) can be used. Assuming

ϕ′(z) =
1

2
ZI(z), ψ′(z) = −

1

2
zZ ′

I(z), (1.18)

one will obtain:

σxx = ReZI − yImZ ′
I,

σyy = ReZI + yImZ ′
I,

σxy = −yReZ ′
I,

2µwx = (1 − 2v)ReZ0 − yImZI,

2µwy = (1 − 2v)ImZ0 − yReZI,

dZ0

dz
= ZI.

(1.19)

Now the problem (1.5) is reduced to finding the analytical function ZI(z)
that fulfills the following boundary condition:

ReZI

∣

∣

|x|≤a,y=±0
= −p (1.20)

and decreases at infinity as:

|ZI(z)| ∼ O(|z|−2). (1.20′)

The problem is solved by:

ZI = −
1

π
√

z2 − a2

a
∫

−a

p
√

a2 − ζ2dζ

ζ − z
+

+
1√

z2 − a2

∞
∑

k=0

[

a′
k

(z − a)k+1
+

a′′
k

(z + a)k+1

]

,

where a′
k, a′′

k are arbitrary real constants. Taking into account that defor-
mation energy concentrated in the vicinity of the crack tips V1, V2 should
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be finite:

∫

V1,2

σijεijdv < ∞,

we can conclude that a′
k = a′′

k = 0 ∀k. Thus the solution of our problem is
given by well-known Keldish—Sedov’s formula (Keldish, Sedov, 1937):

ZI = −
1

π
√

z2 − a2

a
∫

−a

p
√

a2 − ζ2dζ

z − ζ
. (1.21)

Polar coordinate system (r, θ) with the origin at the crack tip (x = a) is
introduced. Old coordinates are coupled with the new ones by:

z = a + reiθ.

Finally, one will obtain the following expressions for displacements and
stresses in the vicinity of right crack tip:

σxx =
KI√
2πr

cos
θ

2

(

1 − sin
θ

2
sin

3θ

2

)

+ . . . ,

σyy =
KI√
2πr

cos
θ

2

(

1 + sin
θ

2
sin

3θ

2

)

+ . . . ,

σxy =
KI√
2πr

cos
θ

2
sin

θ

2
cos

3θ

2
+ . . . ,

wx =
KI

µ

√

r

2π
cos

θ

2

(

1 − 2v + sin2 θ

2

)

+ . . . ,

wy =
KI

µ

√

r

2π
sin

θ

2

(

2 − 2v − cos2
θ

2

)

+ . . . ,

KI = lim
z→a

√

2π(z − a)ZI =
1√
2πa

a
∫

−a

p(ζ)
a + ζ

a − ζ
dζ.

(1.22)
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If p = p0 = const then:

ZI =
p0

π
√

z2 − a2

a
∫

−a

p(ζ)
a2 − ζ2

z − ζ
dζ = p0

(

z√
z2 − a2

− 1

)

,

KI = p0
√
πa,

Z0 = p0

(

√

z2 − a2 − z
)

+ C,

2µwy

∣

∣

y=0
= 2(1 − v)ImZ0 = 2(1 − v)p0

√

a2 − z2.

Now expressions (1.12)–(1.15) can be checked. One should also note that
expressions (1.22) are identical to the well-known Sneddon formulas (Sned-
don, 1946). They were also obtained by M. Williams (Wiliams, 1957) and
G. Irwin (Irwin, 1957).

1.3 Irwin’s criterion

Following reasoning of Morozov (Morozov, 1984), approach based on the
energy balance is applied to the problem of fracture surface propagation in
three-dimensional space. The surface of the body after fracture process (in
the accepted terms) can be presented as: ∂Ω ∪ M+ ∪ M− ∪ ∆Σ+ ∪ ∆Σ−.
Accounting the boundary conditions

∆
−−→
σ(n)

∣

∣

∣

∣

∂Ω

= 0 and

[−−→
σ(n) + ∆

−−→
σ(n)

]
∣

∣

∣

∣

M∪∆Σ

= 0,

Fig. 1.3.
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one can write:

∆A =

∫

∂Ω

−−→
σ(n)∆$ud∂Ω =

∫

∂Ω

(−−→
σ(n) + ∆

−−→
σ(n)

)

∆$ud∂Ω =

=

∫

∂Ω∪M∪∆Σ

(−−→
σ(n) + ∆

−−→
σ(n)

)

∆$ud∂S =

∫

Ω

(σij + ∆σij)∆eijdΩ.

Besides that:

∆U =
1

2

∫

Ω

(σij + ∆σij)(eij + ∆eij)dΩ −
1

2

∫

Ω

σijeijdΩ.

Therefore:

∆U − ∆A = −
1

2

∫

Ω

∆σij∆eijdΩ = −
1

2

∫

∂Ω∪M∪∆Σ

∆
−−→
σ(n)∆$udS =

= −
1

2

∫

∆Σ

∆
−−→
σ(n)∆$udS =

1

2

∫

∆Σ

∆
−−→
σ(n)∆$udS =

1

2

∫

∆Σ+

∆
−−→
σ(n)∆$u+dS+

+
1

2

∫

∆Σ−

∆
−−→
σ(n)∆$u−dS =

1

2

∫

∆Σ+

∆
−−→
σ(n)(∆$u+ − ∆$u−)dS =

=
1

2

∫

∆Σ+

∆
−−→
σ(n)[∆$u]dS. (1.23)

Here the following conditions were used:

−−→
σ(n)

∣

∣

∆Σ+ = −
−−→
σ(n)

∣

∣

∆Σ−
,

−−→
σ(n)+∆

−−→
σ(n)

∣

∣

∆Σ
= 0 and [∆$u] = ∆$u+−∆$u−.

Applying (1.23) to the first basic problem of the crack theory (the case

of plane strain) and accounting that in this case
−−→
σ(n)

∣

∣

∆Σ+ = −
−−→
σ(y)

∣

∣

∆Σ+

and ∆$u = $u+ − $u− one can obtain:

∆U − ∆A =
1

2

a
∫

0

(σyy(u+
y − u−

y ) + σxy(u+
x − u−

x ))dx.

Now, using expressions (1.22) at the crack surface (y = 0), one can receive:

σyy =
KI√
2πx

+ . . . , σxy = 0;

u+
y = u−

y =
KI

µ
(2 − 2v)

√

∆a − x

2π
+ . . .
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Fig. 1.4.

and then:

∆U − ∆A =
1

2

a
∫

0

K2
I (2 − 2v)

2πµ

√

∆a − x

x
dx = −

K2
I (1 − v)

2µ
∆a.

Taking into account the expression for the surface energy change ∆Π =
2γ∆a one can finally rewrite the Griffith energy balance to the following
form:

KI < KIC =

√

2γE

1 − v2
. (1.24)

The relation obtained is usually called Irwin’s criterion for fracture or
the critical stress intensity factor criterion: if the stress intensity factor in
the tip of the crack is less than the critical value, typical of the material
fractured, then the crack does not propagate.

In the particular case when p = p0 = const one gets KI = p0
√
πa and

critical amplitude of the load can be determined as (see (1.16)):

p2
cr =

2γE

πa(1 − v2)
.
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Chapter 2

Fractals and fracture∗

Fractals. Application of fractal approach to fracture
problems. Fracture initiated from an angular notch

2.1 Introduction

It is obvious that propagation of fracture surface is a much more compli-
cated process as comparing to simple extension of a rectilinear crack with
smooth edges, as it is treated in the linear fracture mechanics. In reality
fracture process results in creation of surface with a big number of irregu-
larities of different sizes (Fig. 2.1). Nature of these irregularities is mainly
defined by the structure of material and the geometry of the specimen (see,
e.g., Ravi-Chandar & Knauss, 1984). In this chapter fractal approach will
be applied to fracture connected problems. Obviously, peculiar macroscopic
parameters of irregularities of a fracture surface are mainly defined by the
process of fracture surface appearance.

It is natural that the simulation of such a complicated object as an
ideal mathematical crack ignores its interior structure. This approximation
is quite suitable in many cases but there is a wide class of problems where
accounting of the geometrical structure of fracture surface plays the prin-
cipal role. These are problems that include energy consuming processes
where one is forced to use specific energy parameters per unit of length,
square or volume. But if the boundary of the investigated fracture zone
is strongly uneven and can be poorly approximated by a smooth surface
then the actual length of edge, the actual square or volume of the whole

∗Authors acknowledge Dr. A.Kashtanov for his significant contribution to this chap-
ter.
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Fig. 2.1. Typical fracture surface.

object are vastly differing from what the traditional theory is working with.
Incidentally, a number of experimental effects contradicting Griffith’s ap-
proach is known. In order to solve this problem a modification of Griffith’s
criterion is needed.

In some cases Neuber—Novozhilov’s (see chapter 4 or Morozov and
Petrov, 2000) approach is helpful while trying to account for structure of
a fracture surface. This approach is coupling some structural size to mi-
crofracture features. Another approach was proposed and experimentally
tested by B.Mandelbrot (Mandelbrot, 1983). He supposed a statistical self-
similarity of fracture surfaces and suggested a fractal model of quasibrittle
crack. This approach gave a possibility to construct a more precise connec-
tion between micro singularities of fracture and its macroscopic parameters.
On the one hand, it stimulated translation of the classical theory of brittle
quasistatic fracture to another language (the most sequential statement one
can find in the works of Mosolov (Mosolov, 1991) and Goldstein & Mosolov
(Goldstein, Mosolov 1993). It has also caused attempts to classify fracture
scale levels (Goldstein, Mosolov 1992). At the same time introduction of
fractal correction for calculation of specific properties allows one to take
into consideration surface roughness and to receive a more precise model
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of fracture process. In this chapter fractal approach is used to solve prob-
lems of crack mechanics, which do not have an adequate solution within
the framework of traditional fracture theory. Successful attempts to apply
fractals to brittle fracture were published by Kashtanov and Petrov (Kash-
tanov, Petrov, 1998, Kastanov, Petrov, 2001). These results are extensively
used in this chapter.

2.2 Fractals in nature

2.2.1 The fractal concepts and

their physical interpretations

The concept of fractal is known for a long time but attitude to it was
rather ambiguous since the time when the first fractal curves were con-
structed. Actually, the appearance of Cantor’s set and Peano’s curve gave
rise to a split among mathematicians of the nineteenth century. While the
majority of scientists considered them as some pathological entities, their
founders regarded the results as a hymn to abstract mathematics. They
were admired by the fact that pure science has managed to step over the
limitations of its natural origin (Mandelbrot, 1983).

However, it was impossible to explain the origin and nature of these
curves staying within the framework of classical theories based on Euclid’s
geometry and Newton’s mechanics. All this resulted in a crisis of naturalism
which began in the end of the 19th century and was lasting almost a half of
the century. During this period the main principles of modern science were
formed. Fractal geometry, being one of the newest branches of mathematics
had raised as a result of work of such scientists as Poincare, Cantor, Peano,
Hausdorff, Sierpinski and Mandelbrot.

A concept that offers a possibility of giving a strict definition of fractal
set is the concept of fractional metric dimension. It was introduced by F.
Hausdorff while he was studying various sets with non-integer dimensions.
Let N(ε) be the minimal number of m-dimensional solid spheres with radius
ε, needed to cover some limited set X ⊂ Rm. This set has metric dimension
D, 0 ≤ D ≤ m, if at ε → 0 the number of spheres N(ε) grows as Cε−D

where C ≥ 0, that is limε→0 N(ε)εD = C. Set X is called fractal if its
Hausdorff dimension D is not an integer.

For example, if we have ordinary two-dimensional region then N(ε) ≈
Ω−2 or limε→0 N(ε)ε2 = Ω, where Ω is the area of the considered region.
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For the ordinary curve one will have N(ε) ≈ Lε−1, limε→0 N(ε)ε = L. Here
L is the curve length.

Thus, for any set:

D = − lim
ε→0

lnN(ε)

ln ε
(2.1)

because of:

− lim
ε→0

lnN(ε)

ln ε
= − lim

ε→0

−D ln ε+ lnC

ln ε
= D. (2.2)

Now one can calculate the length of a plane fractal curve. For this purpose
it can be approximated by a broken line constructed of identical segments
with length ε. Then, using the definition of Hausdorff, under assumption
that ε is small enough one will get:

L(ε) = N(ε)ε = Cε1−D = C0(l/ε)
Dε. (2.3)

Here a constant C is represented as C = C0lD, L is the fractal length of the
considered curve, l is the macroscopic length of this curve and C0 is some
dimensionless constant. It is obvious that fractal and macroscopic lengths
of the considered curve should be coincided, so L = l|D=1 ⇔ C0 = 1.
Hence, the metric length of the curve is related to its topological length by
a relation:

L(ε) = (l/ε)Dε. (2.4)

Well-known examples of fractal sets include Cantor set (D = ln 2/ ln 3 —
Fig. 2.2a) and von Koch curve (D = ln 4/ ln 3 — Fig. 2.2b).

The property of self-similarity is held for these objects as well as for
other regular fractals: they can be divided into indefinitely small parts in
such a way that each part will appear as a small copy of the whole object. In
other words, if one will look at a regular fractal with or without microscope
he will see exactly the same picture.

Let’s examine von Koch figure in details. The polygonal line obtained
at k′th step consists of 4k segments of length 1/3k and has an overall
length equal to (4/3)k. Thus, the length of the limiting polygonal line
when k → ∞ (that is the length of von Koch curve) is increasing infinitely
and its Hausdorff dimension is:

D = lim
k→∞

ln 4k

ln 3k
=

ln 4

ln 3
> 1.
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Fig. 2.2. a — Cantor set, b — Von Koch curve.

Besides that, von Koch curve consists of four identical parts similar to the
whole curve with the ratio of similarity equal to 1/3. Further, each part
can be again divided into four identical parts and so on. Therefore, the
length of any piece of this curve is infinite.

In the same manner the dimension of any other regular fractal set can
be calculated. For example, the dimension of Cantor set is:

D = lim
k→∞

ln 2k

ln 3k
=

ln 2

ln 3
< 1
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and its length equals zero:

L = lim
k→∞

2k

3k
= 0.

In spite of the fact that the definition of fractal dimension was for-
mulated by F. Hausdorff in 1919, fractal geometry remained a subject of
abstract mathematics for quite a long time. Scientists came across natu-
ral objects having fractal properties only in the second half of the twenti-
eth century. In 1961 L. Richardson tried to measure the length of Great
Britain’s coastal line and ended up with an interesting effect. He took a
map of the UK and followed the UK coastal line with some preset spread
of a pair of compasses. He made this in such a manner that every new step
of compasses began at the point where the previous one ended. Then the
length of coast should be approximately equal to the number of steps multi-
plied by the magnitude of the compasses spread. He iterated the procedure
with smaller and smaller spread and expected that the measured length
would quickly approach some defined value — the true length of coastal
line. Surprisingly the behaviour of the length measured was opposite to
the expected: it increased infinitely with reduction of compasses spread.
Nevertheless such a behavior can easily be explained. Reducing the spread
of the pair of compasses he took into account smaller and smaller capes
and bays. And while using a map of a greater scale, new irregularities of
coastal line, not visible at the previous map, were appearing. Obviously
these new irregularities were making contribution to measured length. As a
result he found that the coast is so uneven that it is not possible to precisely
approximate it with a polygonal line.

However, fractal properties of a coastal line, so evidently exhibited in
the previous paragraph do not allow considering it as a fractal. By defi-
nition the fractal set is a set with fractional metric dimension. Procedure
of measurement of dimension assumes reduction of the measurement step
to zero. Obviously this condition cannot be satisfied for a natural object:
one cannot choose a step smaller than some size related to the microstruc-
ture of an object investigated. In 1967 B.Mandelbrot (Mandelbrot, 1983)
formulated a revolutionary concept allowing usage of fractals to model nat-
ural processes and phenomena. He defined fractal as a structure consisting
of parts that are similar to the whole structure. According to this defini-
tion various objects, which were characterized as “strange”, “confusing”,
branched, wrinkled, porous etc., could now be studied using strict quantita-
tive terms of fractal dimension. Here it is necessary to mention that though
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fractal models for natural objects allow giving a more precise description
of structure of these objects, all the models are only approximations of
actual objects in some restricted range of scale levels. Nature normally
provides much more complicated structures than a human can construct.
Nevertheless, in some cases fractal approximation is much more precise and
convenient than the linear one.

Even so, using this approach one faces a very serious problem. The
definition of physical fractal structure given by Mandelbrot does not supply
a definition of “physical” fractal dimension. This dimension has to be
evaluated from some experimental procedure or numerical method. There
are different approaches to determination of dimension of natural objects
but all of them are applicable only in some limited range of scales.

Dimension of cluster can be considered as the first example. Let clus-
ter X ⊂ Rm consist of elementary particles of size εmin. To define fractal
dimension one can operate with sizes within the range εmin ≤ ε ≤ εmax,
where εmax is a scale comparable to geometrical size of the considered ob-
ject. The cluster can be divided into cubes with size ε. Let N(ε) be the
smallest possible number of such m-dimensional cubes needed to cover the
whole cluster. It is usually stated that the cluster is having fractal dimen-
sion D if for all scales from a considered range the following relation is
fulfilled:

N(ε) ∼ (ε/εmin)
D, εmin ≤ ε ≤ εmax. (2.5)

The magnitude D is determined as a slope of linear dependency lnN(ε) as
a function of ln ε.

Another widely spread definition of dimension of a physical fractal for
a plane curve is based on the Richardson’s method. Suppose one intends
to measure the length of some plane curve using a pair of compasses. If for
any spread of compasses within the range εmin < ε < εmax the relation

N(ε) ∼ ε−D, εmin < ε < εmax (2.6)

is fulfilled, then the considered curve is a fractal with dimension D. This
dimension is called the fractal dimension of Richardson. It is easy to see that
within the considered range the length of a fractal curve can be expressed
as:

L = (l/ε)Dε, εmin < ε < εmax. (2.7)

This definition of physical dimension is very close to the one of Hausdorff.
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Another definition of dimension of a curve dimension is known as “box
dimension”. Suppose, one covers the considered curve using squares (boxes)
with side εi. At the next step each box is divided into four smaller boxes
with sides εi+1 = εi/2 and the number of squares containing at least one
point of the curve is calculated. If relation (2.6) is fulfilled within some
range of sizes then the considered curve is a fractal.

Unfortunately it is proven only for mathematical definition of Hausdorff
dimension that the magnitude of the fractal dimension is not depending on
coverage (see, e.g., Falconer, 1990). For physical fractals different proce-
dures of approximated definition of fractal dimension give different values.
Therefore even for similar natural objects it is impossible to consider fractal
dimension as a typical property of these objects without a reference to the
procedure of how the dimension was measured.

2.3 Measurement of fractal dimension

There exists a big number of approaches, based on different definitions of
fractal dimension, to how one should measure fractal dimension of an ob-
ject. Here some methods applicable to measurements of dimension of quasi-
brittle fracture surfaces are presented. These are metallographic methods,
widely used as direct methods of fractal analysis.

The slit islands analysis (SIA) is the first of them. A specimen contain-
ing a crack is coated with nickel (or, in some cases, silver) and then polished
in a plane parallel to the crack surface until many small “islands” become
visible on the crack surface. These “islands” are the specimen material
surrounded by “lakes” of the covering material (i.e. nickel or silver). This
procedure provides transition from complicated three-dimensional structure
of fracture surface to plane structures of “coastal lines of islands”. Individ-
ual “islands” are photographed with high resolution registration techniques
and their square S and perimeter P are measured. The values obtained are
plotted in full logarithmic coordinates log S versus log P and approximated
by a straight line. Then the fractal dimension of the fracture surface is
defined as: D = α + 1 where α is a fractal dimension of “coastal lines”
determined using relation P ∼ Sα/2. Thus α is defined directly by the
slope of the constructed plot.

Another widely spread metallographic method to determine fractal di-
mension is the method of vertical sections. It differs from the slit islands
method by alignment of the polished plane. In this method the vertical sec-
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tions of crack surface are produced. Then the magnitude α is determined
by the relation between the length of the surface profile L and the scale
of measurements ε: L(ε) ∼ ε1−α. For reliability the magnitude α is cal-
culated as the average value of magnitudes obtained on cuts with different
alignment with respect to overall direction of crack propagation.

Another frequently used metallographic method is the profile Fourier
analysis. It implies the calculation of power spectrum (the sum of squared
amplitudes) of crack surface profile. For regular fractals and statistically
self-similar structures in the interval of self-similarity the power spectrum
s(k) can be approximated by s(k) ∼ k−B, where k is the wave vector and
index B is the exponent coupled with fractal dimension D by the following
relation: B = 2(3 − D).

The apparent shortage of metallographic methods is the dependency of
measured result on a specific approach and chosen measurement scale. In
other words values of dimension obtained using one or another method do
not coincide. At the same time these values do correlate between each other
and do reflect singularities of the fracture surface investigated.

Many other methods are used to measure fractal dimension [see e.g. Fal-
coner, 1990 or Borodich and Onishchenko, 1999], but it is necessary to note
that any of these methods is rather inaccurate. One has to carry out mea-
surements on a big number of scale levels. However, natural objects display
only 3–4 levels of statistical self-similarity. This does not allow for evalu-
ation of fractal dimension with high accuracy. Besides that, there are no
homogeneous fractal aggregates in nature. Any natural fractal represents
a multifractal object: it consists of parts with different fractal dimensions.
That the character of crack surface irregularities varies vastly is especially
visible in experiments on brittle materials. For fast running cracks three
zones with different degree of roughness are usually distinguished: the mir-
ror zone (adjacent to the crack initiation point), misty and hackle zone
(appearing as the crack propagates). Different zones and transitions be-
tween them are characterized by different values of fractal dimension. In
this sense it would be more correct to speak about dimension of some area
of the fracture surface, rather than about the dimension of the whole crack.

The conclusion is unfortunately not very promising: only if measured
fractal dimensions of two cracks differ really alot one can state that two
cracks really have different fractal dimensions. For this reason it is a doubt-
ful way to modify existing classical fracture theories introducing some ”frac-
tal corrections” obtained experimentally. A much more fruitful approach
is the simulation of crack as a fractal with dimension determined at some
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fixed scale level from some theoretical reasoning. Then, solving a specific
problem for a crack, described by an introduced fractal, it is possible to
determine some physical magnitudes. Values for these magnitudes can be
easily received experimentally, for example, the value of the critical load
or the critical stress. In particular, it is offered to evaluate the fractal
dimension so that it satisfies the energy balance equation.

2.3.1 Fractals in brittle fracture mechanics

For a long time it is known that the dislocation structure of metals is
changing as the load is increased. This modification is displaying transition
from homogeneous to cellular dislocation structure accompanying plastic
deformation process (this result was published by Zolotuhin (Zolotuhin,
1998), see also Ivanova et. al, 1994). In fig. 2.3 scheme for transition from
homogeneous to cellular dislocation structure under plastic deformation
process is presented.

Fig. 2.3. Scheme for transition from homogeneous to cellular dislocation structure
under plastic deformation process.

At the initial stage of plastic deformation there are a lot of dislocations
uniformly distributed in a material volume. As the strains increase, dis-
locations are accumulated into tangles. Further, these tangles are shaped
into a precisely arranged cellular structure. Tangles aggregated into the
cell walls are fractals with dimensions varying continuously from D = 1
(random distribution of dislocations) via 1 < D < 2 (flabby tangles) to
D = 2 (precise geometrical walls of cells).

Fractal model of brittle fracture allows considering it in the same man-
ner: the fracture process can be represented as a process of gradual increase
of fractal dimension of the appearing crack. In ideal material prior to ap-
plication of the load, fractal dimension of the fracture surface is D = 0
and the crack does not exist. As the load is increased the precrack zone
is formed as a result of appearance of numerous microcracks. In the plane
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case this process can be simulated by some kind of lacunar fractal (ex.
Cantor set, Fig. 2.2) with dimension less than 1. The dimension of this
fractal is gradually increasing to D = 1, corresponding to appearance of an
evident macrocrack. On this stage quasistatic fracture is usually studied
in a classical solid mechanics formulation. The further growth of fractal
dimension results in increase of roughness of the crack surface and this can
be modeled by some invasive fractal with dimension D > 1 (such as von
Koch curve, Fig. 2.2b). When the fractal dimension is close to 2 branch-
ing begins since the crack cannot increase its roughness anymore and tries
to release the excess of accumulated energy in such a way. This effect is
observed in experiments on fast running cracks.

In the majority of static problems it is sufficient to consider the process
of fracture only on the stage when the crack can be simulated by a single
line segment (fractal dimension of the crack is close to 1). At the same time
consideration of fracture process as a process of growth and interaction of
microcracks gives solutions to problems unsolvable within the framework
of classical fracture mechanics. This process can also be related to the first
lacunar stage of macrocrack extension as well as to the third stage when
fracture surface is developing and changing.

While constructing the fractal model it is important to remember that
the fractal length has no additive property: consider two fractal curves
having the same dimension D but having different macroscopic lengths l1
and l2. According to (2.4) the fractal lengths of these curves measured
using step ε are equal to:

L1 = (l1/ε)
Dε, L2 = (l2/ε)

Dε. (2.8)

Now consider a curve with the same dimension and macroscopic length
equal to l1 + l2. Its fractal length is:

L =

(

l1 + l2
ε

)D

ε. (2.9)

Evidently, if D > 1 then

L1 + L2 < L. (2.10)

Besides that it is necessary to note that any self-similar fractal curve,
such as von Koch figure, with fractality arising from locally transverse dis-
turbances of a line, cannot be a model for brittle crack. In contrast to a
coastal line the crack surface should be kinematically admissible: the faces
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Fig. 2.4. An example of self-affine fractal curve.

of the crack should have a possibility to slide apart as two rigid bodies. Self-
similar fractal curve (ex. von Koch figure) has recessive segments receding
backwards, against the common direction of crack propagation (Fig. 2.2b).
In this case, the separation of crack faces is impossible without additional
fracture, but then the evolution of fracture surface cannot be represented
as a growth of a simple fractal crack. For this reason self-similar (or locally
disturbed) fractals are not convenient to use while simulating fracture sur-
faces. Instead, it is better to consider the self-affine fractals obtained from
a line by disturbances normal to crack direction (Fig. 2.4).

2.4 The plane problem for angular stress concentrator

2.4.1 The plane problem for angular stress concentrator

As discussed in the previous chapter, the plane problem for angular stress
concentrator is one of the most important problems in crack mechanics,
and it cannot be solved utilizing the classical equation of energy balance.
Consider an elastic plane with an angular notch with an angle 2π − 2ω.
Suppose the plane is loaded by a uniform load p applied at infinity in
direction given by y-axis (Fig. 2.5).

It is necessary to find the solution of Lame equation with boundary con-
ditions σn = 0, σns = 0 at the notch faces and σxy = 0, σy = p at infinity.
In accordance with Griffith’s concept of energy balance equation the linear
crack is generated in the angular vertex when the load has reached the crit-
ical value p∗. To generate a crack of some predefined length l it is necessary
to commit the work ∆W . It will result in a change of surface energy of the
system by ∆Π proportional to the length l of the crack generated.
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Fig. 2.5. Plane containing an angular notch.

Following Griffith’s hypothesis in the case of brittle fracture all the work
committed is spent exclusively on generation of a new surface. Thus, at the
moment of crack initiation the equation of energy balance takes the form:

∆W = ∆Π. (2.11)

As shown above, at the moment of crack initiation ∆W ∼ l2µ where µ is
the least positive root of the following equation (Fig. 2.6):

µ sin(2ω) + sin(2µω) = 0. (2.12)

So, ∆W ∼ l2µ, but at the same time ∆Π ∼ l. Hence, magnitudes of
different orders are appearing in the left and right-hand side of the energy
balance (2.11). This means that the critical load level is impossible to
define.

It will be demonstrated that the mentioned problem can be avoided
assuming crack fractality. Suppose a crack is generated in the vertex of a
notch and is propagating “in average” along the x-axis. This crack can be
represented as a fractal with some dimension D. The crack is occupying
the region [0, l] along the x-axis and [0, l1] along the y-axis. Thus l1 . l.
Therefore the “true” length of the crack L is related to its linear length l
by the fractal law (4.7). Now if at any fixed scale ε one will consider that
the crack length L is proportional to l2µ then ∆Π ∼ L and ∆W ∼ l2µ ∼ L.
Thus, eliminating L it is possible to write the Griffith criterion for the
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Fig. 2.6. µ as a function of ω.

stated problem. If L ∼ l2µ then in accordance with (2.7) one will get:

D = 2µ. (2.13)

It should be noted that if ω ∈ [π/2,π] then D ∈ [1, 2] and the magnitude
of D can be used as a value for Hausdorff dimension of the fractal curve.

Thus, the equation of Griffith’s energy balance allows natural gener-
alization to the case of fracture developing from the vertex of an angular
notch. The basic technique of such a generalization is the introduction of
crack fractality. Then the crack dimension can be uniquely determined by
the angle of the notch.

2.4.2 Hypotheses of fractal generalization of the

Griffith energy balance

Consideration of brittle crack as a fractal makes it possible to construct
an equation of energy balance and to determine the critical load in prob-
lems with angular stress concentrators. In order to make this the following
assumptions are made:

• Griffith’s hypothesis is correct. Thus, all the work spent on the
system is consumed for generation of a new fracture surface.

• Developing crack can be simulated by a fractal with undefined di-
mension D.

• The work of the crack opening ∆W is the integral parameter of the
stated problem and is determined at the macroscopic scale level.

• The surface energy of a crack ∆Π is calculated using the crack
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fractal length to take into account the microstructure of the crack
surface.

• The fractal dimension D of the simulated crack can be found from
request on correctness of energy balance (2.11) at the macroscopic
scale.

In crack mechanics there exists a basic parameter describing the elementary

fracture cell at each scale level d = 2
π

K2
IC

σ2
C

(structural approach to fracture

is presented in every detail in chapter 4 or in works of Morozov (Morozov,
1984) and Petrov (Petrov, 1996). Here σC is the ultimate strength of ma-
terial and KIC is the quasistatic fracture toughness. For rectilinear crack
ω = π having length 2a the quasistatic fracture toughness can be deter-
mined at the macroscopic scale by KIC = p∗(π)

√
πa. Naturally at another

scale level the “true” crack length is changing in accordance to (2.7) and
the value of static fracture toughness is also changed. In other words each
spatial scale can be described by its own characteristic scale d of a fracture
process. Generally speaking, this fracture scale is not related to real geo-
metrical structure of material. At each scale level the fractal law (2.7) has
the form:

L = (l/d)Dd. (2.14)

It was discussed above that only one scale level is used. Thus d can be
considered as a value defined experimentally at the macroscopic scale.

2.5 The problem of symmetric hole

As an application of principles stated above, consider an important partic-
ular case of angular notch problem, namely, the problem of symmetric hole
(Fig. 2.7).

Consider an elastic plane weakened by a hole formed by circular arcs.
This problem can be investigated using the method of bipolar coordinates
(see Ufland, 1950). Let

z = x + iy; ζ = α+ iβ.

Then

z = ai coth
ζ

2
; 0 ≤ α < ∞,−π ≤ β ≤ π (2.15)
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Fig. 2.7. Plane with a symmetric hole.

and

x

a
=

sinβ

chα− cosβ
,

y

a
=

shα

chα− cosβ
, (2.16)

One could note that the line α = const is a circle x2 + (y − a cothα)2 =
a2/sh2α having its center at the point with coordinates (0, a cothα) and
radius a/|shα|; and the line β = const is a circle (x − a cotβ)2 + y2 =
a2/ sin2 β having the center in the point with coordinates (a cotβ, 0) and
radius a/| sinβ|. By the way, the lines β = const coincide with the hole
surface.

Introducing:

h =
a

chα− cosβ
; g2 =

(

dζ

dz

)2

= h−2 (2.17)

and following the considerations of the previous chapter one can obtain (see
Morozov, 1986):

aσαα =

[

(chα− cosβ)
∂2

∂β2
− shα

∂

∂α
− sinβ

∂

∂β
+ chα

]

Φ

h
,

aσββ =

[

(chα− cosβ)
∂2

∂α2
− shα

∂

∂α
− sinβ

∂

∂β
+ cosβ

]

Φ

h
,

aσαβ = −(chα− cosβ)
∂2

∂α∂β

Φ

h
.

(2.18)
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Here Φ gives a solution of biharmonic equation having the form (in bipolar
coordinates):

[

∂4

∂α4
+ 2

∂4

∂α2∂β2
+

∂4

∂β4
− 2

∂2

∂α2
+ 2

∂2

∂β2
+ 1

]

Φ

h
= 0 (2.19)

and the common solution of considered problem is:

Φ = Φ1 + Φ2, (2.20)

where Φ1 defines the uniaxial tension along x-axis and equals to:

Φ1 = pah
sh2α− (chα− cosβ)2

2(chα− cosβ)
, (2.21)

Φ2 = pah

{

(2K1 − 1) cosβ + K1(chα− cosβ) ln
chα− cosβ

chα+ cosβ
+

+
1√
2π

∞
∫

−∞

(A cosαch(λβ) + B sinβsh(λβ))e−iλαdλ

}

,

(2.22)

where

KI =
1 − 2 sin2 ω

∫∞
0

λdλ
sh(2λω)+λ sin(2ω)

4
∫∞
0

sh2(λω)−λ2 sin2 ω
λ(λ2+1)(sh(2λω)+λ sin(2ω))dλ

. (2.23)

The asymptotic expression for stresses in the initial problem and for
displacement field in the problem of the same hole with cuts of length
l . a are (Morozov, 1986):

σyy(0, y)|y→±a = pc1(ω)
( r

2a

)µ(ω)−1
+ . . . , (2.24)

uy(0, y)|y→±a+l = 6pKI(ω)lµ−1/2

√

|r − l|
(2a)µ

+ . . . . (2.25)

Here r = |y − a|, µ is determined by equation (2.12), c1(ω) is a defined
coefficient (c1(π) = 1/2 and c1(π/2) = 3) and KI(ω) is defined by (2.23).
The work of the crack opening is:
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Fig. 2.8. Critical load amplitude
as a function of the hole length.

∆W = −
l
∫

0

σyyuydr

∣

∣

∣

∣

∣

x=0

= −6
√
π(2a)1−2µp2 Γ(µ)

Γ(µ + 3/2)
KI(ω)c1(ω)l2µ,

(2.26)
where Γ(z) =

∫∞
0 tz−1e−tdt is the Euler Gamma-function.

The surface energy of the growing crack can be calculated using its
“true” fractal length to account the microstructure of fracture process. Be-
cause of (2.14) change of the surface energy can be presented as:

∆Π = −4γ(l/d)Dd, (2.27)

where γ is the surface energy density.
To determine the critical load from the balance equation (2.11) in terms

of (2.26) and (2.27) one has to demand coincidence of exponents of l in the
left and right-hand side of the energy equation. Condition (2.13) has to be
valid in the considered problem. Now the value for the critical load p∗ can
be expressed in the following way (solid line in Fig. 2.8 corresponds to the
length of a hole 2a equal to 1):

p2
∗ =

2γΓ(µ + 3/2)

3
√
πΓ(µ)KI(ω)c1(ω)

(

2a

d

)D−1

. (2.28)

Thus, simulation of a crack as a fractal with dimension determined by
the value of an angle of the angular notch made the problem solvable:
energy balance equation is satisfied and the load needed to initiate fracture
process is found. The asymptotic solution for stress and displacement fields
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are obtained: σ ∼ rD/2−1, u ∼ rD/2 (where r is the distance from the
hole vertex) which coincide with asymptotic solution given by Goldstein &
Mosolov (Goldstein, Mosolov, 1993). It should also be mentioned that it
was assumed that the attention should be paid to microstructure of the
crack only at the stage when its surface energy is calculated. At the same
time the work spent on crack opening was determined at the macroscopic
scale level.
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Chapter 3

High rate fracture

High rate fracture. Experimental results on high
speed and pulsed loading. Inapplicability of classical
strength criteria in problems of dynamic fracture

3.1 High rate fracture

Studies in dynamic fracture date back to the first half of the 20th century
when the first experimental results on fracture, coursed by intensively ap-
plied loads (Hopkinson, 1901, Wallner, 1938, Schardin and Struth, 1939,
Wells and Post, 1958) and the first analytical solutions for cracks mov-
ing with speeds comparable to that of a Reyleigh wave appeared (Yoffe,
1951, Broberg, 1960, Atkinson and Eshelby, 1968). Later, in the 70’s and
the early 80’s dynamics of fracture became a special area of interest for
experimentalists and it was then that the main effects characterizing frac-
ture under high loading rates were experimentally observed (Bradley and
Kobayashi, 1970, Kobayashi et al., 1974, Dally, 1979, Ravi-Chandar and
Knauss, 1984a, b, c, d, Dally and Shukla, 1980, Kalthoff, 1986, Dally and
Barker, 1988, Rosakis and Zehnder, 1985). Along with this, the major-
ity of analytical solutions, classical for the modern dynamic fracture, were
published (Freund, 1972a,b,c, Kostrov, 1966, Kostrov and Nikitin, 1970,
Achenbach, 1974, Willis, 1975, Freund, 1990, Broberg, 1989). The 80’s and
the early 90’s were the time when modern approaches to fracture dynamics
have been formed.

3.2 Experimental fracture dynamics. Overview

Among the experimental methods of research on dynamic crack-growth
resistance and fast fracture, the methods of dynamic photoelasticity and
caustics are the most effective. These methods have been developed in

45
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the last three decades. The most important feature of these methods is
the ability of direct tracking of quantitative characteristics of the material
stress state during the ongoing fracture process. This is possible using a
combination of classical methods of optical image processing with high-
speed photography techniques. In this chapter principles and peculiarities
of both methods, being applied to fast-start and crack-propagation prob-
lems in brittle solids, will be examined.

3.3 Methods of dynamic photoelasticity

The basis of the dynamic photoelasticity method is the ability of differ-
ent vitreous polymers to perform the photoelastic phenomenon. The effect
is stipulated by the fact that mechanical stresses, being applied to opti-
cally transparent materials, result in appearance of optical anisotropy. This
leads to appearance of birefringence; a linearly polarized light wave passing
through a tensile plane decomposes into two orthogonally polarized rays,
each of which propagating at its own speed.

Afterwards both rays are brought together into a common polarization
plane and an interference pattern appears. This pattern can be analyzed
using well-known methods. The difference in optical distance (phase differ-
ence), following mechano-optical rheological laws, corresponds to the local
plane strain in the point. This provides a possibility to define quantitative
characteristics of the in-plane deflection mode at each point of the sample.

With this type of modeling, vitreous polymers with clearly expressed
elastic-brittle and photoelastic properties are usually used. In particu-
lar, Homalite-100 and modified epoxy KTE are such materials (see, e.g.,
Kobayashi and Dally, 1977). Homalite-100 is a transparent vitreous poly-
mer with birefringence. Owing to its processability, it is intensively used
in studies by the photoelastic method. It can be obtained as large sheets
with optical-quality polished surfaces. An important characteristic of this
material is its ability to preserve its properties under sustained loading.
It was demonstrated by A. B. Clark and R. J. Sanford (Clark and Sanford,
1956) that this material’s optical constant does not depend on the rate of
loading. The study of Homalite-100 dynamic behavior revealed (Kobayashi
et al., 1973) that this material is suitable for analyses of crack propagation
using the photoelastic method. Nowadays it is widely used by American
and European researchers as one of the most brittle birefringent materials
available.
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Other materials, also often used in photoelasticity experiments, are com-
pounds based on an epoxide resin. The KTE epoxide (see, e.g., Kobayashi
and Dally, 1977) is obtained by polymerisation of resin Epon 828. Polymeri-
sation is achieved with the help of a vulcanising ingredient, polyxypropyle-
namine.

Plates, made of KTE epoxide, have a strong birefringence and are effec-
tively used in dynamic investigations using the photoelastic method. The
epoxide compounds in comparison to Homalite-100 are more viscous and
at the same time more sensitive to the loading rate.

Principal mechano-optical values of Homalite-100 and KTE epoxide are
given in Table 3.1 (Kobayashi and Dally, 1977).

Parameter Homalite-100 KTE epoxy

c1 (m/s) 2150 1970

c2 (m/s) 1230 1130

Ed (GPa) 4.82 3.86

µd (GPa) 1.84 1.47

νd 0.31 0.34

ρ (Ns2/m4) 122 117

KIC (MN/m3/2) 0.45 1.18

Cσd (MN/mm) 0.45 1.18

Table 3.1

HereEd and µd are the dynamic Young’s modulus and the shear modulus
respectively; νd is the Poisson’s ratio; KIC is the static fracture toughness
(critical stress intensity factor in quasistatic conditions); Cσd is the material
optical constant under dynamic loading; and ρ is the mass density.

Elastic constants under dynamic loading are determined by measure-
ment of the longitudinal c1and the transverse c2 wave velocities. These
measurements are carried out by observations, of the stress-wave propa-
gation in a half-plane loaded dynamically, for example by a charge of an
explosive substance using the photoelastic method.

The material optical constant Cσd is a parameter linking the optical
characteristic isochromat sequential number N to the main stresses by
means of the optical rheological law:

2τ = σ1 − σ2 =
NCσd

h
, (3.1)
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Fig. 3.1.

where τ is the peak shear stress in the plate; σ1- σ2 is the difference of
principal stresses and h is the thickness of the specimen. Measurement of
Cσd under dynamic loading can be performed on the basis of simultane-
ous measurement of axial deformation and the number of fringes in the
specimen, loaded by uni-axial impact (Clark and Sanford, 1956).

A stress state in the crack-tip vicinity is determined by means of tem-
poral scanning of isochromats. The pattern is obtained with the help of
high-speed photography. Different systems of high-speed photography are
used. Examples of usable cameras are the Kranz-Shardin multi-spark cam-
era (33,000–85,0000 frames/s) and a streak camera of SPR-1(2) type (1–
2 million frames/s). Dimensions and forms of isochromats recorded on the
photographs reflect fairly accurately the instantaneous value of the stress
intensity factor. Again, the ability to determine the crack-tip position in
the process of its propagation allows measurement of its length as a func-
tion of time. A typical pattern of behavior of isochromats in the crack-tip
vicinity is shown in Fig. 3.1.

To determine the instantaneous values of the parameters of the stress
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intensity factor K(t), the dimensions and forms of the isochromats are mea-
sured and characterised. The characteristics of the stress-field intensity are
acquired on the basis of analytical and experimental test results. Analyt-
ical calculations of isochromat forms are carried out with the help of the
Vestergaard function of stresses:

Z(z) =
K√
2πz

[

1 + β
(z

a

)]

+ α,

where z=reiθ. The expression K√
2πz

gives the singular part of the stress field
surrounding the tip of a crack with the length 2a, located in the center of
a plane plate. Parameters α and β permit to take a more precise account
of the boundary influence and the applied loads. Furthermore, the domain
adjacent to the crack tip, where the described isochromat analysis is used,
expands alittle. The parameters K, α and β determine the characteris-
tic form of isochromat loop near this domain. Expressions for τ and for
the difference σ1 − σ2 from (3.1), calculated according to the Vestergaard
function, make it possible to compute the stress intensity factor from the
measured geometrical characteristics of isochromats near the crack tip.

3.4 The method of caustics

Stress intensity factors for stationary and expanding cracks can be deter-
mined experimentally using schlieren optical methods. P.Manogg (Manogg,
1964) has worked out a method of schlieren figures, which later became
well — known in fracture mechanics as the method of caustics (Theocaris
and Gdoutos, 1972).

Let us consider the fundamental principles of the method of caustics
(see, e.g., Kalthoff et al., 1977, Rosakis et al., 1988). Let the notched
specimen from the transparent material, illuminated by exterior forces, be
lightened by a parallel optical beam. The cross-section of the specimen
cut by a plane passing through the zone around the crack tip is shown in
Fig. 3.3.

An increase of the intensity of the stresses in the zone closer to the crack
tip leads to decrease in the plate thickness and changes the material’s, index
of refraction. Hence, as the first approximation, the region of the crack tip
is acting as a divergent lens, deflecting the light from the axis of the beam.
This causes appearance of a schlieren figure, limited by an intense light edge
(caustic), that can be observed on a screen beyond the specimen (Fig. 3.3).
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Fig. 3.2.

The boundary between light and shadow for the given figure is deter-
mined by the annular domain surrounding the crack tip, the radius of which
depends on the distance between the screen and the specimen. Appearance
of one caustic is typical for isotropic materials, and appearance of two caus-
tics for anisotropic ones. For transparent materials this method can be used
in transmitted light, and for non-transparent materials in reflected light.

P.Manogg (Manogg, 1964) computed the form of schlieren figures for
a tensile crack supposing that the stress distribution near the crack tip is
described by Sneddon’s formula. Following his course of reasoning:

Let x1 and x2 be the screen coordinates of a ray being transmitted
through a non-deformed plate and X1 and X2 be the same coordinates
after deformation of the plate. Let us consider the deformed specimen
surface in the crack tip (’lens’) given by the equation:

x3 + f(x1, x2) = 0.

Regarding distance from the specimen to the screen z0 as much greater
than its thickness (z0 / f), one can get:

(X1, X2) = (x1, x2) − 2z0∇f.

The caustic is an envelope of beams. Its equation is written by assignment
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Fig. 3.3.

to the Jacobean coordinate transformation a value of zero:

det [δα,β − 2z0fα,β ] = 0, α,β = 1, 2, (3.2)

where δα,β is the Kroneker delta.
For the opening mode of a tensile crack we have:

f(r, θ) = u3(r, θ) = −
νh

E
√

2πr
KI cos

θ

2
, (3.3)

where KI is the stress-intensity factor for mode I crack opening; E and ν
are constants of elasticity (Young’s modulus and Poisson’s ratio); h is the
thickness; and r, θ are the polar coordinates at the crack tip.

A substitution of (3.3) into the transformation (3.2) gives the equation
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of the caustic, shown on the screen, which turns out to be an epicycloid.
The maximum diameter of the caustic is a function of the stress-intensity
factor and can be described by the following formula:

KI =
2
√

2πE

3λ5/2υhz0
D

5/2 , (3.4)

where D is the caustic diameter; λ is a numerical coefficient, characterising
the epicycloid form; and z0 is the distance between the specimen and the
screen.

Experimental realization of the method is simple enough. A monochro-
matic light beam, emitted by a laser, having passed through a system of
lenses, falls on a specimen. Reflected (or transmitted) rays are captured
on a screen. The specimen is loaded, and the maximal dimensions of the
schlieren figure are measured. Then, substituting the parameter values in
(3.4), one is able to calculate the stress intensity factor.

During dynamic tests schlieren figures are registered with the help of
high-speed photography. The start is initiated by the crack itself.

Materials studied by the caustic method include: polymethylmethacry-
late (PMMA), Homalite-100, epoxy, Araldite-B, plexiglas and polycarbon-
ate.

3.5 On an asymptotic representation of the
stress field near the crack tip

A real stress field appearing in a thin plate is always three-dimensional.
Experiments on plates of plexiglas and martensitic steel carried out with
the caustic method have shown (Krishnaswamy et al., 1988, Rosakis and
Ravi-Chandar, 1986) that the radius of the space-stress-state zone near
the tip of a macroscopic crack is not less than 0.5h, where h is the plate
thickness. Nevertheless, in practice there are many cases when a brittle-
fracture analysis could be carried out with the help of a two-dimensional
asymptotic description based on the stress intensity factor. As was already
noted, this can be determined by measurement of the stresses in the crack-
tip vicinity according to the well-known asymptotic formulas.

Thereby dimensions and shapes of the process zone of a stress state
with a two-dimensional asymptotic description acquire a great significance.
Let us examine this problem in terms of the opening mode of tensile crack
behavior in static conditions (Petrov et al., 1991).
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Fig. 3.4.

This problem has been solved by the photoelastic method using plane
specimens made of organic glass. Specimen 1 was made of organic glass with
the optical constant C = −2.04 × 10−2Pa−1, and specimen 2 of optically
sensitive organic glass with the optical constant C = 40.5 × 10−2Pa−1.

Both specimens were shaped as plates with dimensions 220×68 mm.
The thicknesses of the plates 1 and 2 were 3.25 and 4 mm respectively. The
crack location and its dimensions are denoted in Fig. 3.4. For specimen 1
crack length l was 25.2 mm, and 26.8 mm for specimen 2. Special holes near
the crack faces provided formation of an ideal crack end from the original
notch when stretching forces p were applied.

The specimen was subjected to remote uniaxial stretching in the di-
rection perpendicular to the notch plane by a loading device, UP-8. Each
specimen was investigated for two remote tensile stresses p equal to 0.91 and
to 2.23 MPa. The stretched specimen was placed in the field of a coordinate
synchronous polarimeter, CSP-10. With its help, using the Saint-Armond
method, the optical phase difference ψ and the parameter φ of optical iso-
cline in monochromatic light with the wavelength λ=546.1 nm were mea-
sured (see, e.g., Alexandrov and Akhmetzyanov, 1973). The measurements
were taken along the plane θ=const (θ is the polar angle). The values of
tangential stresses τxy and the differences of normal stresses σx − σy were
calculated at these points according to the measured optical values by the
photoelastic method:

τxy =
δ

2Ch
sin (2ϕxy) , σx − σy =

δ

Ch
cos (2ϕxy) , (3.5)
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where δ is the optical propagation difference, determined by the measured
phase difference; C is the optical constant obtained from calibration of
stretched specimens of the tudied material; and φxy is the angle determin-
ing the direction of the largest principal stress σ1 relative to the x-axis.
Moreover, φxy = φ for material with C >0, and φxy = φ±90◦ for material
with C <0; h being the thickness of the examined model.

It was supposed that the stress-field distribution near the crack tip is
described by asymptotic (for r→ 0) Sneddon’s formulas (see, e.g., Morozov,
1954):

σx =
KI√
2πr

cos
θ

2

(

1 − sin
θ

2
sin

3θ

2

)

− p + o(1),

σy =
KI√
2πr

cos
θ

2

(

1 + sin
θ

2
sin

3θ

2

)

+ o(1), (3.6)

σxy =
KI√
2πr

cos
θ

2
sin

θ

2
cos

3θ

2
+ o(1).

The relations (3.5) and (3.6) permit a link between measured optical values
and the stress intensity factor KI. The correctness of the asymptotic de-
scription (3.6) in the area around the crack tip can be confirmed by stability
of KI values, calculated according to optical values in such an area.

Coordinates of the point where optical values are measured were de-
termined by the polarimeter CSP-10 with an accuracy of 0.02 mm. The
accuracy of values ψ and φ did not exceed 0.5◦. During the experiment the
error of stress calculations for σx − σy and τxy and consequently the error
of the KI value was established.

Measurements of the optical values were carried out along θ equal to
±135◦, ±120◦, ±90◦, ±75◦, ±45◦ and ±30◦.

Fig. 3.5, a typical graph, shows the value modifications of KI according
to the coordinate r/h. It follows from the results obtained for each line
θ=const that an interval can be selected where the value of KI is nearly
constant. The mid value of KI in the given interval, when p=2.23 MPa,
turned out to be equal to 0.58MPa

√
m. The deviations of mid values on

different rays did not exceed 5% of the given value.
As an example of usage of the results of the specimen-1 study, let us

denote the near and the far boundaries of the asymptotic representation
acting at the zone of stress near the crack tip by r1 and r2 respectively. It
is clear that for 0◦ ≤ |θ| ≤90◦ the near boundary is situated at the distance
of r1 ≥ 0.7h from the crack. When |θ| ≥90◦ the value r1 increases to h, i.e.
the distance from the crack tip to the near boundary is a bit larger.
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Fig. 3.5.

The far boundary of the indicated zone is r2 = 4h for |θ| ≥90◦. When
the angle θ changes from 90◦ to 30◦ the distance r2 is reduced from 4h to
2.8h. The values of r1and r2for θ=0◦ are obtained by extrapolation and
are r1=0.7h and r2=2.6h respectively.

The final form of validity zone for two-dimensional stress state repre-
sentation near the crack tip is shown in Fig. 3.6.

Fig. 3.6.

Elongation of this zone in the y direction to one and a half times its
value in the x direction is very important and quite an unexpected result.

Thus, the studies carried out on two specimens of organic glass of dif-
ferent brands and thicknesses led us to the following results:

(1) the near boundary of the validity zone for two-dimensional asymptotic
stress-state representation is greater than or equal to 0.7h from the
crack tip. The far boundary of this zone in the examined problem
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extends to a distance greater than or equal to 0.5 l from the crack
tip;

(2) the validity zone for two-dimensional asymptotic stress representation
has an unequal elongation in different directions from the tip and is
more elongated in the direction perpendicular to the crack line.

The aforementioned results are very important in order to optimize the
experimental determination of stress intensity factors in zones with cracks
in static as well as in dynamics situation.

3.6 Theoretical contradictions of fracture dynamics

Let us study the problem of interaction between a longitudinal stress wave
with a crack (x ≤0, y=0) in an unbounded elastic plane xy. On the crack
faces we have boundary conditions σxy=0, σy=0. Let the components of
the displacement vector u and v in the incident wave be expressed by:

u = 0,
v = v0 [(c1t + y)H (c1t + y) − (c1t + y − c1T )H (c1t + y − c1T )] .

Then the stress σy in the wave has a rectangular temporal profile:

σy = P [H (c1t + y) − H (c1t + y − c1T )] ,

where P=(λ+2µ)v0. P is the amplitude of the incident stress wave and T
is the pulse duration.

Here and further c1 =
√

(λ+ 2µ)/ρ and c2 =
√

µ/ρ are the speeds
of the longitudinal and the transverse waves respectively, λ and µ are the
Lame constants and H(t) is the Heaviside step function.

At t =0 the interaction between the incident wave and the crack starts,
whereupon near the crack tip (r =0) a singular stress field appears, char-
acterised by asymptotic formulas:

σij =
KI(t)√

2πr
gij(θ) + O(1), r → 0.

Here r, θ are polar coordinates at the crack tip.
Let T tend to zero, keeping the momentum of the external action U=PT

constant. Then, as proved by Cherepanov (Cherepanov, 1974),

KI(t) =
UΦ(c1, c2)

2
√

t
. (3.7)
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According to this formula there always exists a time when the value of
the stress intensity factor exceeds an arbitrarily large value. So, according
to the classical approach, fracture may occure under arbitrary pulse U
including those that are indefinitely small. Obviously this does not reflect
the real situation.

Experiments show that dynamic fracture mechanics abounds in multi-
tudinous effects that can not be incorporated into classical ideas. Many of
them will be analysed in the next chapters. But we would like to point out
here an important circumstance; a whole series of effects characteristic of
dynamics can be explained, and even computed, with the help of a special
generalisation of the principles of linear fracture mechanics based on the
concept of the spatial-temporal structure of a fast-rupture process.

3.7 High rate fracture of brittle materials

One of the main problems in testing the properties of resistant materials
in dynamics is the dependence of dynamic strength on the way how the
exterior load is applied. This difficulty typically appears under conditions
of high-rate loading. In this case the strength can be interpreted as a critical
value of the stress intensity factor corresponding to microcracking near the
crack tip. The strength can also be interpreted as a dynamic local stress
leading to rupture. Both are intensity limits of a local stress field and the
fracture occurs when these limits are reached. During fracture of ’intact’
solids (i.e., not containing macroscopic defects) the critical local stress is
not determined by material’s properties but is a complex function of the
loading history.

3.8 Fracture of initially ’intact’ materials

Experiments on fracture of ’intact’ specimens demonstrate the dependence
of dynamic strength on the loading rate and duration even in materials
characterised by nearly ideal elastic-brittle behavior. This situation is illus-
trated by the well-known diagram of the temporal dependence of strength
that was investigated first for metals by Zlatin et al. (Zlatin et al., 1974,
Zlatin et al., 1975).

Let us examine, in terms of mechanics, some of the principal results
obtained in these experiments.
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To create a controlled fracture as a result of intense load with duration
of 10−6µs, the cleavage phenomenon was utilized.

The specimens examined were disk-shaped with thickness of 25 mm.
Loading was created by a pneumatic gun accelerating projectile to speeds
up to 1050 m/s. Stresses created at the cleavage region, were determined
using interferometry measurements at the rear surface of the specimen.
Time dependence of stresses in the cleavage region was calculated according
to the formula:

σ(t) =
1

2
ρc1(V − VS),

where V is the free-surface velocity; VS is the same function shifted in the
argument on the interval, equal to doubled time during which the longitu-
dinal wave runs through the plate thickness; ρ is the mass density; and c1

is velocity of the longitudinal stress wave.
Method to estimate failure stress by drop in velocity of a free surface was

used in many works (see, e.g., Kannel and Fortov, 1987, Meshcheryakov,
1988). Unfortunately it is suitable only for perfectly trapezoidal pulses
having vertical forefront. This method cannot be mechanically transferred
to, for example, triangular-shaped pulses. On the contrary the aforemen-
tioned approach allows tracing the full history of stress-state development
at cleavage region and is more efficacious since it can also be applied to
arbitrary pulse forms.

Using this approach in experiments with aluminum and copper speci-
mens (see Zlatin et al., 1974, Zlatin et al., 1975), a dependence of time,
while tensile stress was acting in the cleavage region on its amplitude, was
found. These data were compared to corresponding temporal strength de-
pendencies obtained in quasistatic experiments. The results obtained using
these two methods are quite different.

According to the results of the dynamic tests, cleavage induced by high
rate pulses of threshold duration occurs under stresses exceeding the static
strength limit by many times. Similar tests with analogous results were
carried out on a great number of specimens of different materials (see, e.g.,
Pugachev, 1985, Meshcheryakov, 1988, Meshcheryakov et al., 1988).

The results of these experiments show that it is not possible to treat
the stress sample fractures at as an independ strength characteristic, as it
is strongly affected by parameters of the exterior loading.

Another significant observation made in this and other experiments is
that fracture can be delayed and can occur when the local stress is decreas-
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ing. The physical nature of this effect has been discussed in many theoreti-
cal works (see, e.g., Nikiforovskii and Shemyakin, 1979, Nikolaevskii, 1981,
Shock, 1981, Zlatin et al., 1986).

We can conclude that the principal effects discovered in these cleav-
age experiments could not be explained by means of traditional fracture
mechanics.

3.9 Critical stress intensity factor for dynamic fracture

Similar problems arise in attempts to characterise material’s resistance to
dynamic crack growth. Experimental studies carried out in American re-
search centers in the 1970s and 80s (see, e.g., Freund, 1976, Irwin, 1957,
Kalthoff, 1986, Kalthoff and Shockey, 1977, Kalthoff et al., 1980, Knauss,
1984, Krishnaswamy et al., 1988, Sih and Macdonald, 1974, Smith, 1975,
Theocaris and Papadopoulos, 1987) acquire a vital significance for under-
standing of fracture under high-rate loading.

Ravi-Chandar and Knauss (Knauss and Ravi-Chandar, 1985, Ravi-
Chandar and Knauss, 1984a,b,c) conducted many experiments on impact
loading of cracked specimens.

Experiments were conducted using specimens of vitreous polymer
Homalite-100.

The main result of these experiments is that the critical value of the
stress-intensity factor KID increases with increasing loading rate and can
significantly exceed the corresponding quasistatic value (Fig. 3.7). More-
over, it turned out that, if the time-to-fracture is t∗ ≥ 50µs influence of the
loading rate on the KID value can be neglected. With a loading rate in-

Fig. 3.7.
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Fig. 3.8.

crease, the corresponding time-to-fracture decreases, and the critical value
of the stress intensity factor increases significantly.

These experiments convincingly demonstrate that in dynamics the crit-
ical value of the stress intensity factor is not a material parameter, and,
therefore, attempts to measure dynamic strength using ordinary static
methods are quite erroneous. The authors of the experiments note the
impossibility of using the traditional methods of continuum mechanics to
simulate dynamic crack behavior.

3.10 Cracks loaded by impacts of threshold amplitude

Kalthoff and Shockey (Kalthoff and Shockey, 1977) were the first to study
threshold amplitudes of short pulses causing fracture. Later similar exper-
iments were continued by other researchers (Homma et al., 1983, Shockey
et al., 1986).

Suppose a specimen having a crack of length L is subjected to an impact.
Let this impact of duration T and amplitude P have a rectangular form.

In these conditions one can experimentally determine threshold (mini-
mal) impact amplitude P leading to crack extension whilst impact duration
T is fixed.

Kalthoff and Shockey (Kalthoff and Shockey, 1977) carried out an ex-
perimental investigation of this problem using polycarbonate specimens. A
projectile accelerated by a pneumatic gun was hiting a plate. The pulse am-
plitude and its duration are simple functions of projectile velocity and plate
thickness. They are easy to control, to compute or to measure directly.

The results of these studies are shown schematically in Fig. 3.8.
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Fig. 3.9.

Homma et al. (Homma et al., 1983) have experimentally investigated
the same problem on specimens of different geometries made of different
materials. Short pulses of desired duration and amplitude were created
by cylindrical shells and a special compressor device. Minimal amplitude,
causing fracture of specimens, was determined. As a result of these tests
dependency of critical amplitude on the initial crack length was constructed.

Tests on specimens made of different materials displayed decrease of
critical values of amplitudes P as the crack length L is increased. These
results were compared to the static dependence, given by the formula:

P =
KIC√

L
F

(

L

W

)

,

where W is the specimen relative width. For short cracks (long pulses)
the form of curves corresponding to dynamic and static loading is similar.
For long cracks (short pulses) critical amplitudes, measured experimentally,
tend to a finite value and the curve is located essentially higher than the
static one (see Fig. 3.9), tending to zero.

Several undertaken attempts to compute threshold fracture characteris-
tics appeared to be unsuccessful. According to classical approaches (Achen-
bach 1972, Sih, 1968), a crack, loaded by a critical pulse, advances under
a condition that the dynamic stress-intensity factor reaches its maximum.
The corresponding relation, whence threshold amplitudes can be deter-
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mined, is written as:

max
t

KI(t) = KIC . (3.8)

Analysis has shown that for short pulses (long cracks) experimentally mea-
sured critical amplitude significantly exceed values calculated theoretically
according to (3.8).

The analysis of the experimental data has shown (Homma et al., 1983,
Shockey et al., 1986) that fracture can also happen when the stress-intensity
factor is decreasing (effect of fracture delay), that is also unexplainable
within the framework K of traditional fracture mechanics.
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Chapter 4

Incubation time approach:
background and basic concept

Incubation time approach in brittle fracture. Histori-
cal prerequisites. Spatial-temporal nature of dynamic
fracture. Fracture “quantum”. Fracture incubation
period. Fracture scale levels

4.1 Introduction

Nowadays two main approaches to prediction of dynamic crack initiation
exist. The first one originating from the works of Freund (Freund, 1972)
and later developed by Rosakes is based on an assumption, that fracture
criterion in a tip of a crack can be received as a function of stress intensity
factor rate: Kd(t) < Kd

C(K̇(t)), with Kd being the dynamic stress intensity
factor, changing in time, Kd

C being its critical value and dot denoting time
derivative.

This approach showed its applicability to describe some of the experi-
mentally observed phenomena of dynamic fracture, mainly in the case of
well-developed plasticity (though still within the framework of small scale
of yielding). The weak point of this approach is that, as shown in multiple
works (ex. Owen et al., 1998), Kd

C used in proposed criterion is not only
depending on the loading rate and fractured material properties, but is also
a function of experiment geometry and loading conditions. This means that
experimentally measured Kd

C cannot be treated as a material property that
is given a priori and cannot be directly used to model experiments with
other geometries and loading conditions.

The mentioned approach is also not trivial to use while predicting crack
propagation. The reason for this is that using time derivative of a stress
intensity factor in a tip of a fast moving crack we can hardly assess the
history of stress field development in vicinity of a present crack tip location,
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as in times close to the present time, the crack tip was at a point that can
be very distant from the current one.

4.2 Some non-classical approaches in fracture

Most of approaches in dynamic fracture are associated with introduction
of non-elastic rheology and macroscopic crack development. In many cases
this association is an inevitable physical necessity. However, for practical
aims it is very important to provide a direct mechanical approach, pro-
viding reduction of the dynamic fracture analysis to a simple ’industrial’
procedure. That is why rejection from the engineering mode of energy and
power balance traditional schemes of fracture mechanics would be unjus-
tified. Even within the framework of linear elasticity and brittle fracture
these schemes are not complete. Their development, as will be shown below,
can give sufficiently simple explanations of many peculiarities of high rate
fracture (Morozov, Petrov, 1990, Morozov, Petrov, 1992, Morozov, Petrov,
1993, Morozov, Petrov, Utkin, 1990, Morozov, Petrov, Utkin, 1991, Petrov,
1991, Petrov, 1996, Petrov, Morozov, 1994)

Let us examine some nonclassical models of brittle fracture, especially
efficient in situations where classical approaches and the Griffith—Irwin
criterion do not ensure success.

4.3 Novozhilov—Neuber approach

Let us turn to static problems. We will consider an elastic plate with an
angular notch. According to Griffith’s classical scheme we write down an
energy balance equation.

We have ∆Π ∼ ε. An estimation for ∆(A − U) is also known (Mazja,
Nazarov, Plamenevskii, 1981):

∆(A − U) ∼ ε
2π/α.

It is evident that we would not be able to find critical load from the equality:

∆(A − U) = ∆Π.

Let us study two elastic plates weakened by a rectilinear crack and a lune
of small apex angle α. In the first case we have an asymptotic expression
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near the crack tip:

σij =
CI

(1)

rλ
I
1

f I
ij(1)(θ) +

CI
(2)

rλ
I
2

f I
ij(2)(θ) + ...,

where λI
1 = λI

2; C1, C2 are coefficients characterising the stress-state inten-
sity; and r, θ are polar coordinates with the origin at the crack tip.

In the second case the roots are separated:

σij =
CII

(1)

rλ
II
1

f II
ij(1)(θ) +

CII
(2)

rλ
II
2

f II
ij(2)(θ) + ...,

where λII
1 < λII

2 .
According to Irwin’s criterion, in the second case only the dominating

term should be taken into account; this leads to a significant difference be-
tween the situations I and II that is difficult to interpret. Neuber (Neuber,
1947) and Novozhilov (Novozhilov, 1969 Novozhilov, 1969) have suggested
the following fracture criterion at different times and on the basis of differ-
ent approaches:

1

d

d
∫

0

σdr ≤ σc. (4.1)

Here σ is the main tension stress near the crack tip (r=0); σc is the ultimate
stress for ’intact’ material.

The main peculiarity of (4.1) is introduction of some structural dimen-
sion d in an explicit form. One can note that a structural characteristic
size dimension is already implicitly present in classical fracture mechanics,
appearing in the form of dimensional combinations of the classical strength
criterion parameters:

d ∼
ΓE

σ2
c

, d ∼
K2

Ic

σ2
c

,

with E being the Young’s modulus and Γ being the specific surface energy.
Scholars express various suppositions about physical nature of the pa-

rameter d (interatomic spacing for a medium with regular atomic structure,
grain size for polycrystalline medium, scale correspondence parameter of
strength characteristics etc.). We propose to consider this parameter as
a linear dimension, characterising the fracture of an elementary cell on a
chosen scale level (see, e.g., (Goldstein, Osipenko, 1978, Goldstein, Os-
ipenko, 1993)). Without giving any details we choose d from the following
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condition:

d =
2K2

Ic

πσ2
c

, (4.2)

providing coincidence of (4.1) with the Griffith—Irwin criterion in ’qua-
sistatic’ cases and simple geometries.

Criterion (4.1) in combination with (4.2) gives a possibility for effective
prediction of fracture forecasting in many nonstandard situations, including
the aforementioned cases of plate with angular and lune notches (Morozov,
1954).

4.4 Shockey—Kalthoff minimal time criterion

Testing threshold characteristics of a dynamic load pulse, considered in the
preceding chapter, has permitted authors of those experiments to draw a
conclusion on necessity to revise traditional fracture mechanics.

Kalthoff and Shockey (Kalthoff, Shockey, 1977) suggested new fracture
criterion, which they call minimum-time criterion. The main novelty of the
new approach is in introduction of a structural parameter tinc, having time
dimension and accounting incubation processes preceding macrofracture.
Incubation time tinc is declared to be constant, linked to material proper-
ties. According to this concept, fracture occurs under condition that the
stress-intensity factor KI(t) is exceeding dynamic fracture toughness KID

during this minimal time needed for macrocrack development.
tinc was determined for different materials (Homma, Shockey, Mu-

rayama, 1983, Shockey, Erlich, Kalthoff, Homma, 1986). In particular,
for steels 4340 (7 µs), 1018 (11 µs) and aluminum alloy 6061-T651 (9 µs).

Notwithstanding some eclecticism and absence of a neat analytical set-
ting, the minimal time criterion is a notable step forward, as it introduces
the following principal directives in fracture analysis.

Firstly, the existence of a certain structural parameter, having the time
dimension and controlling the fracture process is considered. Let us remark
that in quasistatics fracture is associated with a certain parameter having
a length dimension. Thus, passing from static loading to dynamic situation
a new structural characteristic appears.

Secondly, it is affirmed that the fracture is not stipulated by instantan-
ious state of local stress field surrounding the crack tip, but is an integral
process developing in time and distributed at structural-temporal interval.
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Minimal-time criterion admits a possibility of such situation. In fact,
from the point of view of classical mechanics, if fracture does not happen
when the stress-intensity factor attains its maximal values, then it can not
happen for smaller values of the stress-intensity factor. The minimal-time
criterion, on the contrary, permits such a situation. As already noted,
experiments on threshold loading proved existence of this effect, that could
be called an ’effect of fracture delay’, by analogy to a similar effect for
cleavage.

4.5 Nikiphorovski—Shemyakin criterion

An other important principle of fracture dynamics was proposed by
Nikiphorovski and Shemyakin (Nikiforovskii, Shemyakin, 1979). It consists
in direct accounting of the local stress history. The criterion reads:

t∗
∫

0

σdt ≤ Jc. (4.3)

This criterion was specially suggested for fracture analysis caused by short-
term exterior pulses.

It is interesting that (4.3) itself could be interpreted from the phe-
nomenological theory of defect accumulation (Kachanov, 1974). Suppose
the following phenomenological law of defect development is valid:

dΨ

dt
= f(σ, Ψ) =







A
(

σ
1−Ψ

)n
, σ ≥ 0

0, σ > 0
. (4.4)

Integrating (4.5), under condition that Ψ ≤1, we get:

A

t∗
∫

0

σndt ≤ 1,

giving (4.3) for n=1.
Despite possible interpretations, (4.3) is a postulate, determining macro-

scopic rupture of an ’intact’ solid medium. Its main deficiency is impos-
sibility of transition to quasistatics. Thus, according to (4.3) any stress,
even insignificant, of the form of σ = σ0H(t), where H is the Heaviside
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step function, leads to fracture. Even for infinitely small σ0. Obviously
this is contradicting the common sence.

Introduction of criterion (4.3) was an important step forward, as it pro-
vided a possibility of direct consideration of loading history. Such an ap-
proach, within the framework of elastic–brittle model, gave an explanation
to several principal effects of fast dynamic rupture of solids (Nikiforovskii,
Shemyakin, 1979).

4.6 Incubation time criterion for brittle fracture

Analysis of experimental results shows that the main contradictions to re-
sults, obtained using traditional models, become apparent in the case when
fracture happens in rather short time intervals after exterior pulse appli-
cation, which corresponds to high loading rates. The fracture itself is ac-
companied by high local deformation velocities, both during cleavage and
initiation of cracks. Indicated contradictions may appear because fracture
models, used for analysis, remain essentially based on quasistatic princi-
ples. This can indicate that while modeling fracture mechanism one does
not take into consideration that during high-rate rupture, together with
elastic resistance of the material, it is also necessary to overcome medium
inertia. While using energy balance equation in dynamic situation the term
representing kinetic energy is traditionally neglected as being small compar-
ing to other terms (Parton, Boriskovsky, 1985, Parton, Boriskovsky, 1988,
Freund, 1972, Freund, 1974, Freund).

Evidently, this approach is incorrect for a high-rate deformation.
Physical imperfection of this criterion is that according to it material

should be fractured at a rather high instantaneous local force, acting at the
crack tip.

In dynamics one should consider inertia, since medium particles, ad-
jacent to rupture place, can move extremely fast. At the same time, in
analogy to structural dimension, known in statics, it is natural to consider
structural time in dynamics. In the simplest case, for structural size d and
maximal wave speed c, the ratio d/c give a characteristic time of energy
transmission between adjacent elements of fractured structure.

Suppose we have a characteristic time interval τ , corresponding to an
incubation (latent) period of macrofracture development. Parameters d and
τ should be evaluated independently.

Hereby we introduce an elementary spatial-temporal fracture cell
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Fig. 4.1.

[0,d]x[t−τ ,t] (Fig. 4.1). In other words, we suppose that a certain struc-
ture, characterizing peculiarities of the fracture process on the prescribed
scale level, is set on the spatial–temporal scale.

Assume that fracture happens, if we have an equality in the following
condition:

1

τ

t
∫

t−τ

1

d

x
∫

x−d

σ(x∗, t∗)dx∗dt∗ ≥ σc, (4.5)

where τ is the fracture structural time; σc is the static strength of material
(ultimate stress); σ (x,t) is the tension stress near the crack tip (r=0); and
d is a length scale parameter in correspondence to strength characteristics,
determined according to static tests on specimens with macrocracks.

In accordance to (4.5), maximal tension stress near the crack tip, aver-
aged over the spatial–temporal interval [0,d]x[t-τ ,t], must be equal to static
material strength in order to initiate fracture. Introducing new notations
(4.5) can be rewritten:

J(t) ≤ Jc,

J(t) =
t
∫

t−τ

x−d
∫

x
σ(t∗, x∗)dt∗dx∗,

Jc = σcτd.

The main problem of dynamic fracture is to determine critical fracture
conditions. It is natural to consider fracture time tf as a moment when the
pulse attains its critical value: J(tf ) = Jc.

According to this approach σc, KIC and τ form a system of parameters
(in the simplest case — of constants), reflecting strength properties of the
material.
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4.7 On the discrete nature of dynamic fracture.
Fracture ‘quantum’

Let the material rupture in one-dimensional cleavage problem (Niki-
forovskii, Shemyakin, 1979) be caused by a triangular-profile stress pulse
with duration T . Let us determine the threshold, i.e. the smallest possi-
ble momentum U = Uc(T ) for the given T , leading to rapture. Using the
classical critical stress criterion σ ≤ σc, we obtain

Uc =
1

2
σcT.

The corresponding threshold is presented in Fig. 4.2 (hatched line). Hence,
even infinitesimal momenta are capable, according to the accepted criterion,
of causing fracture.

Fig. 4.2.

Now consider a problem for semi-infinite crack. Load is given by stress
applied on the crack faces x ≤0, y = ±0:

σy = P [H(t) − H(t − T )] , σxy = 0,

where P and T are load amplitude and duration. Then on the crack con-
tinuation we get:

σy =
KI(t)√

2πr
+ O(1),

where KI(t) is given by (4.1). Using the classical criterion of critical stress
intensity factor KI ≤ KIC we have:

Uc =
KIC

√
T

Φ(c1, c2)
.

Therefore, for T→ 0 threshold fracture momenta become infinitesimal.



Incubation time approach: background and basic concept 75

This conclusion contradicts the common sense. We will show that a sim-
ple account of physical discreteness of dynamic rupture leads to structural–
temporal criterion of fracture.

It has already been mentioned that the main parameter of crack me-
chanics is a linear size d, characterising an elementary fracture cell. Such
a cell has no unambiguous physical interpretation suitable for all practical
cases and is, in fact, a universal fracture characteristic. It can be interpreted
in different ways depending on the class of the problems studied.

Here we introduce an elementary portion (’quantum’) of momentum,
required to fracture one structure cell: U1 = σcτ , w here τ is the incubation
time, determined by the material properties and class of problems.

Suppose that in cleavage conditions a threshold pulse of a given shape,
e.g. triangular or rectangular, with duration T is created in the medium.
Suppose a certain number of structural elements was fractured. Fracture
of m structural cells requires following momenta:

Um = σcτm, m = 1, 2, 3 . . .

Let us introduce a distribution:

Pm = C exp

(

−
Um

αT

)

, (4.6)

where Pm is the probability that m structural cells will fail; α is a pa-
rameter, depending on the shape of the temporal stress profile and C is a
normalising multiplier, determined by relation

∑

m

Pm = 1. (4.7)

The average threshold momentum can be found as

U =
∑

m

PmUm. (4.8)

From (4.6)–(4.8) for a triangular load we have:

U =
σcτ

1 − exp (−2τ/T )
.

The corresponding threshold is shown in Fig. 4.2 as a continuous line. Under
sustained loading (τ . T ) the threshold characteristics can be computed
according to the classical critical stress criterion:

U =
1

2
σcT.
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Let us determine macrorupture as fracture of at least one structural ele-
ment (Novozhilov, 1969). Then the corresponding fracture criterion can be
written in the following form:

t
∫

t−τ

σ(t∗)dt∗ ≡ σcτ . (4.9)

Here τ is the smallest possible time, neded for load of threshold amplitude
to create fracture.

For media with cracks, the mean values of rupture stress on the struc-
tural interval are examined. Instead of (4.9) we have:

t
∫

t−τ

d
∫

x−d

σ(t∗, x∗)dt∗dx∗ ≤ σcτd, (4.10)

coinciding with (4.5). In particular case of quasistatic loading (4.10) coin-
cides with the force criterion of Neuber—Novozhilov. The received condi-
tion coincides with introduced structural—temporal criterion. In this case
in the absence of cracks (4.9) can be considered as a particular case of (4.5).

Now, according to (4.9) and (4.10) dynamic strength of a brittle media
can be evaluated as a calculated characteristic. Moreover, it is natural to
expect that both the critical rupture stress of ’intact’ continuum and the
fracture toughness of cracked domains will show a dependence on parame-
ters of the exterior load, including the loading rate. It was established that
such a behavior is the principal peculiarity of dynamic fracture, stipulated
by ’quantum’ nature of this process.

Essentially, the analysed problem of dynamic strength under high-rate
loading is an analogue to the problem of low-temperature heat capacity of
solids in classical molecular physics (Kikoin, 1976). This problem was solved
using quantum mechanics. Postulates on the discreteness of structure (a
solid is a combination of elementary oscillators), on the discrete nature
of energy (energy is released and absorbed by elementary portions-quanta)
and correspondence principle (within the limits of low loading rate quantum
theory should not contradict the classical one) were taken as a basis. This
approach gives a possibility to explain dependence of specific heat capacity
of solids on temperature. It was shown that for the low temperatures (close
to absolute zero) the energy is finite and is determined by the elementary
energy quantum, and the corresponding temperature dependence of heat
capacity can be calculated fairly easily.
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The dependence of internal solid energy 〈E〉 on temperature θ, being
calculated according to quantum (continuous line) and classical (dashed
line) theories is shown in Fig. 4.3.

Fig. 4.3.

Analogy between quantum mechanics and basic principles of
Novozhilov’s theory is evident:

(1) “all solids consist of spatial–structural elements of a finite size”;
(2) “an elementary act of fracture is a fracture of one structural element”;
(3) “criterion parameters, including a structural element size, should be

chosen in such a manner that for low load rates theory predictions
should coinside with predictions given by classical theories”.

This analogy becomes even more apparent if we compare dependence
〈E〉 − θ, presented in Fig. 4.3, to dependence of a threshold (minimal frac-
turing) momentum on its duration in cleavage (see Fig. 4.2).

The idea of fracture discreteness was discussed in several scientific works.
Thus, ideas of substitution of a solid medium by discrete geometrical struc-
tures has important conclusions (see Novozhilov, 1969, Novozhilov, 1969,
Thomson, Hsieh, Rana, 1971, Slepjan, 1974, Morozov, 1954, Nazarov,
Paukshto, 1984, Morozov, Paukshto, 1991).

4.8 On the relaxation nature of the incubation time

We will show that the discussed structural-temporal criterion is closely
connected to the relaxation processes accompanying rupture development
in continuum.

We suppose that a given point of the material is characterised by inten-
sity of a stress field σ(t). Stresses result in deformation and development of
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Fig. 4.4.

microdamage. Suppose the following deformation-based fracture criterion
is valid under these conditions:

Kχ(t) ≤ Σc, (4.11)

where K and Σc are material constants, and χ(t) is a relative volume
change, caused by deformation and microdamage in the given point.

If the material is linear-elastic, then Σ(t)=Kχ(t) and from (4.11) we
obtain an analogous critical stress criterion:

Σ(t) ≤ Σc.

Suppose the material is following a rheological law:

Σ(t) = Kχ(t) + µ
dχ

dt
, (4.12)

where µ stands for viscosity. Solving (4.12) with respect to χ(t) we get:

χ(t) =
1

µ

t
∫

−∞

exp

[

−
K

µ
(t − s)

]

Σ(s)ds. (4.13)

The kernel of the integrand (4.13) is the function exp
[

−K
µ t
]

. We replace

it by a step function θ(t) (Fig. 4.4) in such a manner that:

∞
∫

0

Q(s)ds =

∞
∫

0

exp

(

−
K

µ
s

)

ds =
µ

K
.
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Then (4.13) is transformed into the following relation:

Kχ(t) =
1

µ/K

t
∫

t−µ/K

Σ(s)ds,

whence, considering (4.11) and using notation τ = µ/K, it follows that:

t
∫

t−τ

Σ(s)ds ≤ Σcτ . (4.14)

Condition (4.14) coincides with structural-temporal criterion (4.9) for ’in-
tact’ materials.

Small values of ’viscous’ term in (4.12) correspond to small viscosity
and long deformation:

µ

K

dχ

dt
. 1.

In this case the critical stress criterion is valid. The ’viscous’ term should
be taken into account for high-rate dynamic loading, and (4.14) must be
used as fracture criterion.

The obtained characteristic τ = µ/K has a physical meaning of relax-
ation time. However, it should be kept in mind that the real relaxation
is caused not only by viscous deformation, but is result of microfracture,
preceding a macrorupture of the material. Seaman et al. (Seaman, Cur-
ran, Aidun, Cooper, 1987, Seaman, Curran, Murri, 1985) have shown that
dynamic macrofracture and change of volume, accompanying it, could be
described by an equation similar to (4.12), and relaxation times for brit-
tle steels and alloys appeared to be larger by several orders of magnitude
as comparing to analogous characteristics of viscous deformation for these
materials.

4.9 On choice of parameters of the
incubation time criterion

The choice of appropriate parameters for fracture criterion has a basic influ-
ence on the possibility to obtain quantitative results in real problems. Only
comparison to experimental results can reveral if this choice was correct.
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Structural–temporal criterion for fracture is based on a system of three
strength parameters: (σc, KIC , τ), two of which, static strength and static
fracture toughness are well-known. The third parameter, giving structural
(incubation) time of fracture, could be interpreted in several different ways.

Insprite of this one should have a method to choose it in any situation.
Let us consider two main possibilities of such a choice:

(1) structural time τ is determined by the fracture structural size:

τ =
d

c
=

d
√
ρ

k
. (4.15)

Here c is the speed of the fastest wave; ρ is the mass density; k is a constant,
depending on the material properties. According to this, τ has the physical
meaning of average time of energy transmission between adjacent fracture
cells.

Further, it will be shown that the structural-temporal criterion with
parameter τ , obtained according to (4.15) gives a possibility of efficient
calculations of dynamic strength characteristics for ’intact’ materials. This
results acquired using uncubation time approach with τ received on the
basis of (4.15) are in a very good coincidence with known cleavage ex-
periments (Zlatin, Pugachev, Mochalov, Bragov, 1974). Zlatin, Pugachev,
Mochalov, Bragov, 1975, Meshcheryakov, 1988, Meshcheryakov, Divakov,
Kudryashov, 1988);

(2) incubation time τ does not directly depend on fracture structural size
and should be obtained experimentally. Processes of birth, growth and
confluence of numerous microdefects in a certain (sufficiently large) area
surrounding the crack tip, preceding macrorupture of a material, determine
the characteristic scale level of macrorupture. The incubation time could
be considered as some integral temporal characteristic of these processes.
Further it will be established that the fracture structural time τ can be
interpreted as the incubation time τ = tinc from minimal-time criterion, as
suggested in (Homma, Shockey, Murayama, 1983, Kalthoff, Shockey, 1977,
Shockey, Erlich, Kalthoff, Homma, 1986).
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Chapter 5

Incubation time approach
(continuation)

Reflection of an elastic wave from a boundary. Cleav-
age. Experimental study of cleavage. Dynamic branch
of temporal strength dependence. Fracture delay. In-
cubation time based analysis of cleavage. Principal in-
stability of strength rate dependencies. Dynamic frac-
ture near the crack tip. Dynamic crack initiation

5.1 Fracture of initially intact media

We will consider materials without artificially made defects and concentra-
tors, like cracks or sharp notches, to be ’intact’ materials. Let us examine
the specific features of these materials’ fracture and possible methods of its
modeling. In this chapter the works (Morozov et al., 1990, Morozov et al.,
1991, Petrov, 1991, Petrov, 1996, Morozov and Petrov, 1996a, b, Petrov,
1993, Smith, 1975) are used.

5.2 Cleavage in solids: Dynamic strength of materials

Historically the first attempts to analyse cleavage were associated with the
application of the critical stress criterion:

σ ≤ σc. (5.1)

As experiments have shown, this criterion could not describe many signifi-
cant peculiarities of cleavage. It can be noticed that in the case of fracture,
caused by a short-term pulse of large amplitude, the critical stress criterion
contradicts the momentum variation law. Thus, accepting the fact that
fracture is initiated by rectangular profile wave with duration t0 and a for
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a threshold amplitude, we obtain U∗ = σct0. Obviously, even infinitesimal
force momenta, not able to change material particles’ momentum signifi-
cantly, can cause fracture.

A number of phenomena observed in this experiments, e.g. the phe-
nomenon of dynamic branch and separated cavity zones and the necessity
of their treatment, have led to a temporal criterion (Nikiforovsky, 1976,
Nikiforovskii and Shemyakin, 1979):

t∗
∫

0

σ(t)dt ≤ Jc. (5.2)

Integral fracture characteristic (5.2) allows theoretical justification of many
important cleavage effects. However, experiments and fracture analysis
indicate a considerable role of structure in this process. It is clear that ac-
counting fracture structural peculiarities gives a possibility to obtain some
new information about temporal dependence of material strength. Many
modern studies, undertaken in the field of dynamic deformation and frac-
ture of materials, are oriented on this. At the same time complicated physi-
cal fracture theories, accounting structure processes, are not always effective
in analysis of practical engineering problems. That is why elaboration of
approaches, explaining and predicting dynamic fracture peculiarities on the
basis of simple mechanical principles is expedient.

Let us examine the aforementioned structural-temporal criterion. For
analysis of ’intact’ media fracture the criterion takes the following form:

t
∫

t−τ

σ(t′)dt′ ≤ σcτ . (5.3)

For definiteness we assume τ = d
c and consider classical one-dimensional

cleavage problem (see, e.g., Nikiforovskii and Shemyakin, 1979). The condi-
tion (5.3) differs from temporal criterion (5.2) by an existence of structural
fracture characteristic τ . In order to determine what new effects this ap-
proach can predict, we will examine reflection of a triangular compressive
pulse from the free end of a semi-infinite bar. Axis Ox is directed along the
bar, which is located at x > 0. The incident pulse is given by:

σ− = −P

(

1 −
ct + x

ct0

)

[H(ct + x) − H(ct + x − ct0)] .

Here P is the pulse amplitude, t0 is its period and H(t) is the Heaviside
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step function. The profile of the stress reflected from the free surface, will
have the following form:

σ+ = P

(

1 −
ct − x

ct0

)

[H(ct − x) − H(ct − x − ct0)] .

The real stress is expressed as σ = σ− + σ+. Maximum tensile stress
is firstly reached at the point with coordinate x0 = ct0

2 . By introducing
dimensionless values T = ct

d , T0 = ct0
d , one can obtain:

σ
∣

∣

x=x0
= F + G,

F = P

(

1

2
−

T

T0

)[

H

(

T +
T0

2

)

− H

(

T −
T0

2

)]

, (5.4)

G = P

(

3

2
−

T

T0

)[

H

(

T +
T0

2

)

− H

(

T −
3T0

2

)]

.

Rupturing amplitude P∗, minimal for the given period t0, can be found
from the following condition:

max
t

I = σc, I =

T
∫

T−1

σ(T ′)dT ′. (5.5)

It follows from (5.4) that the maximum of I(T ) is reached in the integra-
tion interval (T0/2,T0/2+1). Moreover, max

t
I(T ) = PT0/2, if T0 < 1 and

max
t

I(T ) = P (T0 − 1
2 )/T0, if T0 ≥ 1. Due to (5.5), it follows that:

T∗ =







1
/

[

4
(

1 − σc

/

P∗
)]

+ 1, 1 ≤ P∗
/

σc ≤ 2

1 + σc

/

P∗, P∗
/

σc ≥ 2
. (5.6)

where T∗ = ct∗
/

t is the normalised time-to-fracture, defined as the mo-

ment of time when the integral form attains its critical value (5.3). The
appropriate curve is shown in Fig. 5.1.

5.3 Temporal dependence of strength

Obtained relation between fracture time t∗ and corresponding threshold
amplitude P∗ is called the temporal dependence of strength. It shows that
dynamic strength is not a material constant but depends on time-to-fracture
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Fig. 5.1.

(specimen ’life time’). In terms of this dependence the critical stress cri-
terion (5.1) and temporal approach of Nikiphorovski—Shemyakin (5.2) are
on ’different poles’. Critical stress criterion qualitatively describes qua-
sistatic fracture for long times. Experiments have shown that in the case
of short-term loading we can observe a weak dependence of fracture time
on threshold amplitude with a certain asymptote. This effect is called the
dynamic branch of temporal strength dependence.

We notice that (5.2) gives a similar dependence for short term loading,
but it does not cover the case of quasistatic loading. Dynamic branch loca-
tion and its connection to a quasistatic one remain unsolved. Thus, the crit-
ical stress criterion and the temporal criterion (5.2) describe only limiting
cases of the temporal strength dependence. As stated above an introduc-
tion of a structural element gives a possibility to construct a unified curve of
temporal strength dependence (Fig. 5.1). Static and dynamic branches are
smoothely connected. The physical meaning of the horizontal asymptote
is following: under accepted assumption (τ = d/c) it corresponds to trans-
mission time of energy between structure elements. So, for aluminum alloy
B95: (σc=460 MPa; KIC=37 MPa

√
m; c=6500 m/s): d/c=2K2

IC/(πc σ2
c)

that gives approximately 0.6µs. It follows from the obtained formulas that
the threshold amplitude of dynamic loading (cleavage strength) increases
from 600 to 1400 MPa while load duration is changed within the range be-
tween 2 to 0.5 µs. This fact agrees perfectly with experimental data from
(Zlatin et al., 1975, Meshcheryakov 1988). The undertaken calculations
have shown a satisfactory correspondence to experiments carried out on
other materials.

As follows from (5.3)–(5.5), fracture in cleavage region happens with a
delay, after passage of the peak of the local rupture stress (Fig. 5.2).

It is interesting to construct a fracture threshold, i.e. the dependence
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Fig. 5.2.

Fig. 5.3.

of minimal rupture momentum U=PT 0/(2σ0) on its duration. Such a
threshold, obtained according to the critical stress criterion, is shown in
Fig. 5.3 as a sloping dashed line. This line passes through the origin of
the coordinate system; hence, in this case the fracture area in the plane
(T0,U) adjoins the origin. It denotes that even infinitesimal force momenta
are able to cause fracture. This is contradicting the common sence. The
temporal criterion of Nikiphorovski—Shemyakin corrects this situation —
the fracture threshold on the plane (T0,U) is denoted by a horizontal line.
It gives a finite threshold value for small durations; however, it does not
mateh quasistatic situation for long times.

Structural-temporal criterion (5.3) gives a unified threshold curve (full
line in Fig. 5.3), suitable within the whole range of loading times. In our
case the threshold curve is given by the following analytic formula:

U =

{

1, T0 ≤ 1
T 2

0

/

(2T0 − 1) , T0 ≥ 1
. (5.7)



88 Dynamic Strength of Continuum

In the limit of very long and very short pulses it corresponds respectively
to the quasistatic and temporal criteria.

5.4 Fracture zone behavior in cleavage

Fracture zone behavior in cleavage is an extremely interesting subject to
study. Classical approaches can not provide an adequate prediction. Thus,
according to the critical stress criterion, the fracture zone can have a form
of sequentially alternating cleavage sections. According to the temporal cri-
terion fracture occurs continuously in the domain. This domain can have
a finite extent, and is called by V. S. Nikiphorovski and E. I. Shemyakin a
zone of continuous fractionation. The real fracture is characterised by both
cases. In K. B.Broberg’s work (Broberg, 1960) the fracture domain has a
form of fractionated parts, alternating with unfractured zones (Fig. 5.4a).
De facto, the zone of continuous fracture is not continuous. It is also re-
lated to fractured domains in some other experiments (Fig. 5.4b) (see, e.g.,
Shockey, et al. 1983). Moreover, as shown in experiments, the qualita-
tive view of fracture domains depends on exterior load parameters, such as
loading rate, amplitude and duration.

Traditional approaches in fracture do not give a possibility to describe
the whole variety of fracture zone geometries observed in experiments.
Thus, usage of critical stress criterion (5.1) makes it possible to get a se-
quence of cleavage sections (cracks). The temporal criterion of Nikiphorov-
ski-Shemyakin makes it possible to predict a zone of continuous fractiona-
tion (see, e.g., Nikiforovskii and Shemyakin, 1979).

It is interesting that the structural-temporal criterion (4.5) gives a pos-
sibility to model fracture zone dynamics in a more precise way. Let us
examine a scheme of calculation of fractured domain parameters in cleav-
age conditions. We note that in one-dimensional situation rupture stresses
are constant in the ’plane’ of fracture, i.e. perpendicular to wave propaga-
tion. We suppose that the domain is linear, homogeneous and consists of
successive identical structural strata with the thickness b. For definiteness,
as a particular case, we take b = d. An element (stratum) will be frac-
tured if the structural-temporal criterion in its center meets the following
condition:

t
∫

t−τ

σ(t′)dt′ ≥ σcτ.
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Fig. 5.4.

Let t∗ be the time when this condition is first fulfilled. Then, for t < t∗ the
properties and the geometry are unchanged. At time t = t∗ the fracture of
the whole structural stratum occurs. In this connection the whole part of
the specimen, located between the face and the fractured stratum, forms a
cleavage plane. The fractured stratum is an obstacle to waves transmitted

Fig. 5.5.
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by the sample. Further waves, moving to the face and going from it are
reflected by a new free surface.

Calculations, undertaken according to the aforementioned scheme, have
shown that variations of fracture zones, shown in Fig. 5.5, can be created
by a single trapezoidal pulse. The shape of these zones could be signifi-
cantly changed by variation of rate, amplitude and duration of load. This
completely agrees with the existing results of the experimental studies.

5.5 On relationship between quasistatic and
dynamic mechanisms of solid fracture

The undertaken analysis gives a possibility to make a conclusion about
interconnection between quasistatic and dynamic fracture mechanisms in
cleavage. The main peculiarity of cleavage strength can be traced by means
of the obtained diagram of temporal strength dependence. According to this
diagram, the dynamic branch values, which are determined by structural
characteristic d/c, correspond to dynamic fracture mechanism. Moreover,
the dynamic branch location does not correlate with the static strength
of the material σc, which is confirmed by experiments. Transition zone,
extending for times of the order of several structural intervals, reflects the
joint manifestation of dynamic and quasistatic fracture mechanisms. In the
examined situation both the dynamic fracture parameter and the critical
power characteristic influence fracture threshold essentially. Significantly
large fracture times, e.g. one order of magnitude larger than the time it
takes for a wave to travel through the structure, can be examined as times
corresponding to the action range of the quasistatic fracture mechanism.
Such a fracture can be analysed with the help of the critical static stress
criterion. Estimation and comparison to experimental fracture times for
some materials (see, e.g. Zlatin et al., 1975, Meshcheryakov, 1988) lead
to a conclusion that the range of essential influence of structural-temporal
fracture singularities is within the range of several microseconds.

As an example, we will cite some calculated results of dynamic strength
for rail steels RS700 and RS1100. The input data for rail steels are well-
known (Honeycombe, 1980): RS700: σc =780 MPa, KIC=70 MPa

√
m;

RS1100: σc =1160 MPa, KIC=48 MPa
√

m.
RS1100 was subjected to thermoprocessing (oil tempering from 920◦

and release at 540◦). The computed results of temporal strength depen-
dence, for rail steels, are shown in Fig. 5.6. It is clear that RS1100, in spite
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Fig. 5.6.

of higher quasistatic rupture strength, has lower strength under high-rate
shock loading, which is stipulated by its lower crack resistance.

The obtained conclusion is not trivial and demonstrates the necessity
of a qualitative approach to constructional material selection with regard
to corresponding velocity operating conditions. The structural-temporal
approach allows optimisation of this selection.

Fracture structural-temporal and force characteristics modification
leads to a displacement of diagram of temporal strength dependence. Thus,
the decrease of stress-wave propagation velocity changes the location of the
dynamic branch in such a way that the material cleavage strength increases.
Therefore, heating of polymer material up to the temperature of high-elastic
state can lead to increase of its cleavage strength. This conclusion agrees
with experimental studies of cleavage-strength dependence of polymer com-
posites on temperature (Golubev et al., 1987). The threshold diagram in
Fig. 5.3 gives a possibility to conclude that fracture intensity depends on
initial static rupture strength and on stress wave velocities. The latter is
determined by the elastic modulus and the material density. With regard
to this, we can conclude that more rigid and less massive materials cannot
qualitatively resist high-rate dynamic loading.

The dependence of the threshold pulse on its duration (Fig. 5.3) obtained
using structural-temporal criterion shows that, if we know the threshold val-
ues of extremely short loading pulses, we can determine incubation time of
fracture, corresponding to the given material. The latter allows the asso-
ciation of dynamic fracture and surface erosion phenomena in gas flows,
containing hard particles. On the basis of fractographical analysis we can
conclude (ed. Preece, 1979) that the factor controlling erosion fracture is
formation of brittle annular cracks, produced by contact dynamic inter-
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action of flying particles with the surface. Small particles with radius of
several dozens or hundreds of microns, used in the experiments on erosion
fracture, produce extremely short rupture pulses during contact interac-
tion with the surface. If we know their characteristics and the velocity
value of threshold impact during which erosion fracture of a surface occurs,
we can determine an elementary fracture ’quantum’ and the corresponding
incubation time.

Now we will show how the given scheme can be realised in the simplest
approximation. Let a spherical hard particle with radius R and velocity v
fall on the surface of an elastic semi-space. Following the classical Hertz
scheme (see, e.g., Kolesnikov and Morozov, 1989) we suppose the equation
of particle (indenter) movement may be written as:

m
d2h

dt2
= −P, (5.8)

where h is the impact speed, P is the contact force, and m is the particle
mass. In the classical approximation it is supposed that the relation be-
tween contact force and impact speed remains the same as in statics. This
relation can be presented in the following form:

P (t) = kh3/2, (5.9)

where

k =
4

3

√
R

E

(1 − υ2)
. (5.10)

At the initial moment dh
dt = v; then, integrating (5.8), we have:

dh

dt
=

√

v2 −
2h

5
2

5m
. (5.11)

The maximum approaching h0 is attained for dh
dt = 0; hence:

h0 =

[

5mv2

4k

]
2
5

. (5.12)

To compute the impact duration we integrate (5.11) from the beginning of
the interaction to the moment of maximum penetration:

h0
∫

0

dh
√

v2 − 4kh
5
2

5m

=
t0
2

,
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where t0 is the complete impact duration. Whence we have:

t0 =
2h0

v

1
∫

0

dγ

1 − γ
5
2

= 2.94
h0

v
. (5.13)

Numerical integration permits construction of the dependence of penetra-
tion as a function of time, i.e. via h(t). This dependence is approximated
with high precision by the expression (Kolesnikov and Morozov, 1989):

h(t) = h0 sin(2π/t0). (5.14)

The dependence of the maximum rupture stress on time at the surface,
adjoining the contact platform, is computed according to the formula (Lawn
and Wilshaw, 1975):

σ(v, R, t) =
1 − 2υ

2

P (t)

πa2(t)
, (5.15)

where the radius of the contact spot a(t) is determined as:

a(t) =

[

3P (t)(1 − v2)
R

4E

]
1
3

(5.16)

and the contact force P (t) is found using (5.9)–(5.14).
Let v be the threshold particle velocity, at which the material rupture

happens. We introduce a function:

f(v, R, τ) = max
t

t
∫

t−τ

σ(v, R, s)ds − σcτ.

In accordance to the structural-temporal criterion we determine an incuba-
tion time τ as a positive root of the equation:

f(v, R, τ) = 0, (5.17)

for given values v and R.
The obtained formulas can be used for calculation of the incubation time

on the basis of experimental data on threshold velocity of surface erosion
fracture.

Let aluminum alloy B95 with mechanical characteristics E=73 GPa,
ν=0.3, σc=456 MPa be subjected to erosion fracture with erodent charac-
teristics R=150 µm, ρ=2400 kg (m=3πgρ r R3/4).
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Fig. 5.7.

Fig. 5.8.

The dependence of incubation time τ on the threshold velocity of ero-
sion fracture, calculated for the given parameters, is shown in Fig. 5.7. It is
obvious that for a very extent range of velocities, observed for aluminum al-
loys (Urbanovich et al., 1990, Morozov et al., 1994), these methods produce
adequate results.

The effective threshold particle velocity, at which the process of erosion
surface fracture of the given material begins, must be determined experi-
mentally and turns out to be equal to v=33 m/s (Morozov et al., 1994).
Calculations according to the aforementioned formulas give the following
values of characteristics of impact interaction between the particles and the
surface: t0=0.29 µs, h0=3.46 µm. The study shows that function f(v,R,τ)
has only one positive root (Fig. 5.8). The material incubation time, com-
puted for the obtained data, turns out to be equal to τ=0.5 µs.

The obtained value of incubation time gives a possibility to construct
a diagram of temporal dependence of strength for the indicated alloy. The
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Fig. 5.9.

Fig. 5.10.

corresponding computed curve, including not only static, but also dynamic
branches is presented in Fig. 5.9. Experimental points, taken from the
experiments on cleavage fracture for the given material (Zlatin et al., 1974,
Zlatin et al., 1975), included in the same figure, show the efficiency of the
indicated methods of structural time evaluation on the basis of erosion data.
It is noteworthy that approximately the same value for the structural time
can be obtained using the simplified formula (4.15); σc=460 MPa; KIC=37
MPa

√
m; c=6500 m/s): d/c =2\K 2

IC/(pc\σ2
c ) or approximately 0.6 µs.

On the other hand, if we know the material incubation time, e.g. from
experiments on cleavage fracture, we can determine the principal charac-
teristics of the erosion process. The dependence of the erosion fracture
threshold velocity of B95 alloy on the radius of erodent particles, calcu-
lated for τ=0.5 µs, is represented in Fig. 5.10 (curve 1).

As these results show, the dependence is characterised by static and dy-
namic branches. The static part is characterised by a weak dependence of
threshold velocity on the diameter of erodent particles. As opposed to that,
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the dynamic branch shows a rapid increase of threshold velocities with de-
creasing particle dimensions. Moreover, there is some characteristic length
scale, in our case of the order of few hundreds of microns, corresponding
to the quick transition from the quasistatic regime to the dynamic one.
The constructed theoretical curve qualitatively coinsides with well-known
experimental observations (Polezhaev, 1986). Notice that calculations ac-
cording to this scheme with the use of the traditional critical stress criterion
(Fig. 5.10, curve 2), cannot explain the observed behavior of threshold ve-
locities of erosion fracture.

5.6 Dynamic fracture at the crack tip

It is well-known that when formulating the macrorupture criterion, com-
plementing the solid-medium mechanics equations, one has to take into
account the most important peculiarity of dynamic fracture — the exis-
tence of not only spatial but also temporal structure of the process. This
circumstance must be reflected while choosing criterion-determining pa-
rameters and test methods of dynamic strength properties of a material.
Structural-temporal criteria, considered previously, permit taking this dy-
namic fracture peculiarity into account and modeling the process of crack-
growth initiation under the action of impact pulses.

In this chapter we examine some principal peculiarities, and present cal-
culation methods and an interpretation of the well-known high-rate fracture
effects of elastic bodies with cracks (Morozov and Petrov, 1990, Morozov
and Petrov, 1991, Morozov and Petrov, 1992a, Morozov and Petrov, 1993,
Morozov and Petrov, 1996, Morozov et al., 1988a, Morozov et al., 1988b,
Morozov et al., 1991, Petrov and Utkin, 1989, Petrov and Morozov, 1994).

5.7 Threshold pulses of impact loading

An essential contribution to solution of the problem of taking the tem-
poral structure of the dynamic fracture process into account comes with
introduction of the already mentioned incubation time concept, which was
suggested and developed (by Kalthoff and Shockey, 1977, Homma et al.,
1983 and Shockey et al., 1986). Experiments, described in these works,
testify that in the case of macrocrack initiated by intensive short pulses,
threshold amplitude values, obtained experimentally, turn out to be signifi-
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cantly greater than those stipulated by a traditional critical stress intensity
factor criterion. That is why Kalthoff and Shockey (Kalthoff and Shockey,
1977) suggested that one should refuse from this criterion and accept the
fact that fracture occurs when the current value of the dynamic stress-
intensity factor KI(t) exceeds the value of the dynamic fracture toughness
KId during some minimum time tinc. The incubation time tinc is considered
to be a material constant, connected to structural processes.

Experimental determination of the incubation time is accompanied by
a very cumbersome procedure, requiring multiple tests for different values
of impact duration and complicated numerical calculations (Homma et al.,
1983, Shockey et al., 1986). A priori knowledge of the functional depen-
dence of the dynamic fracture toughness on the history of loading is also
essential for the minimum-time criterion.

In chapter 4 we have examined another approach to fracture analysis,
based on the structural-temporal criterion:

1

τ

t
∫

t−τ

ds
1

d

d
∫

0

σ(s, r)dr ≤ σc, (5.18)

where τ and d are the structural time of fracture and its structural size; σc

is the material static strength (ultimate stress); and σ(t, r) is the maximum
tensile stress near the crack tip (r=0).

Structural size d is determined according to data of quasistatic tests
on cracked specimens. In the case of a generalised plane-strain conditions
it can be expressed using the static fracture toughness and strength by a
simple formula (Morozov, 1954):

d =
2

π

K2
IC

σ2
c

.

According to this approach, σc, KIcand τ form a system of determining pa-
rameters, describing material strength properties. The structural fracture
time τ is responsible for dynamic peculiarities of brittle fracture and must
be found experimentally for each material.

We will show that in experiments, carried out in (Kalthoff and Shockey,
1977, Homma et al., 1983 and Shockey et al., 1986), the structural time τ
may be interpreted as tinc.

Let an infinite plate have a crack x ≤0, y=0, and an incident rectangular
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profile stress wave is:

σy = P
[

H
(

t +
y

c

)

− H
(

t +
y

c
− T

)]

, σxy = 0, t < 0, (5.19)

where H(t) is the Heaviside step function. We will find, for the given
duration T , the minimal amplitude of an external load that will initiate
the crack growth. The asymptotic expression of the maximal tensile stress
corresponding to the load given by (5.19), on the crack extension for t >0
has the following form:

σy =
KI(t)√

2πr
+ o(1), r → 0,

KI(t) = Pϕ(c1, c2)f(t), ϕ(c1, c2) =
4c2

√

c2
1 − c2

2

c1
√
πc1

, (5.20)

f(t) =
√

tH(t) −
√

t − TH(t − T ),

where c1, c2 are the speeds of the longitudinal and the transverse waves.
According to (5.18) and (5.20) the expression of the minimal amplitude,
that leads to fracture, obtains the following form:

P1 =
τKIc

ϕ(c1, c2)max
t

t
∫

t−τ
f(s)ds

. (5.21)

At the same time, from the traditional critical stress-intensity factor crite-
rion, it follows that the minimum stress amplitude is given by:

P2 =
KIc

ϕ(c1, c2)max
t

f(t)
. (5.22)

Now we note that

max
t

1

τ

t
∫

t−τ

f(s)ds < max
t

f(t),

whence it follows that P1 > P2, which is reflected in the abovementioned
experiments (Kalthoff and Shockey, 1977, Homma et al., 1983 and Shockey
et al., 1986). They stated that for long cracks (short pulses) the values of
the minimal fracture amplitude turn out to be greater than those obtained
according to the traditional stress-intensity factor criterion.

The temporal dependence of the stress-intensity factor criterion is pre-
sented in Fig. 5.11.
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Fig. 5.11.

As calculations using (5.18) show, the initiation of crack growth happens
with a delay, i.e. during the decrease stage of local stress-field intensity at

the tip. At the moment of fracture t∗ the integral
t
∫

t−τ
f(s)ds obtains its

maximum value, hence f(t∗−τ) = f(t∗). According to the monotonicity of
the function f(t), we obtain, that in the analysed case τ is the time during
which the stress-intensity factor exceeds the value KId = KI(t∗).

We also note that the computed values of dynamic fracture toughness
under the examined conditions turn out to be inferior to the corresponding
quasistatic value:

KId = P1ϕ(c1, c2)f(t∗) =
τKIcf(t∗)
t∗
∫

t∗−τ
f(s)ds

< KIc (5.23)

as observed in experiments (Homma et al., 1983, Kalthoff and Shockey,
1977, Shockey et al., 1986).

This reasoning remains valid for a reasonable arbitrary temporal profile
of a single impact, providing a monotonic increase followed by a decrease
of stress intensities.

So, the analysis of fracture caused by threshold pulses allows the ob-
servation that structural parameter τ has all the formal properties of an
incubation time from the minimum-time criterion, and in the problem of
initiation of macrocrack growth it can be taken that:

τ = tinc. (5.24)

Criterion (5.18) and (5.24) gives a possibility of efficient calculation of the
values of external loading parameters.

Let us take an average incubation time, found in experiments on fracture
of metal plates with a macrocrack: tinc≈10 µs. Calculating the threshold
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Fig. 5.12.

amplitude values in accordance to (5.21)–(5.24) we obtain values for the
relative difference Q=[(P1−P2)/P2]×100% thoroughly in line with the data
of experimental observations (Homma et al., 1983, Shockey et al., 1986).
The corresponding dependence is presented in Fig. 5.12.

Formulas (5.21) and (5.24) give a possibility to determine the incubation
time of a material fracture at the known threshold value of external load am-
plitude. Thus, for steel 4340 (Homma et al., 1983) we have experimentally
obtained a threshold amplitude value within the range of 140–150 MPa, for
T ≈20 µs. According to (5.21) (KIC=47 MPa m1/2, c1=6 mm/µs) we get
τ ≈ 7 µs, coinciding with the incubation-time evaluation for this material
(Homma et al., 1983, Shockey et al., 1986).

For steel 4340, used in the experiments of Homma et al. (Homma et al.,
1983), we have c1=6 mm/ µs, υ=0,3, KIC=47 MPa m1/2,,σc=1490 MPa,
tinc=7 µs. For T=18 µs we get the critical value of amplitude P1=155 MPa
from (5.21) and (5.24).

This value is in line with the experimental data of Homma et al.
(Homma et al., 1983), when a similar critical value of external load am-
plitude, causing a crack ’jump’ at the distance was calculated:

d =
2K2

IC

πσ2
c

≈ 0.6 mm.
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5.8 On loading-rate dependence of
dynamic fracture toughness

Now we suppose that there is a two-sided plane trapezoidal stress wave,
approaching the crack:

σy =
V

2

[(

t +
y

c

)

H
(

t +
y

c

)

−
(

t − t0 +
y

c

)

H
(

t − t0 +
y

c

)

−
(

t −
y

c

)

H
(

t −
y

c

)

+
(

t − t0 −
y

c

)

H
(

t − t0 −
y

c

)]

, σxy = 0,

where V = P/t0; t0 is the given time of the applied stress increase to its
maximum value P . The corresponding asymptotic representation of the
maximum normal stress for the crack extension is determined by (5.20),
where:

f(t) =
2
[

t
3
2 H(t) − (t − t0)

3
2 H(t − t0)

]

3t0
. (5.25)

Let t∗ be the time-to-fracture, and t0 be fixed. Using (5.18), (5.20) and
(5.25) one can find the rapturing amplitude P∗, appropriate for t∗. Then
calculating the critical stress-intensity factor value:

KIq = KI(t∗) = P∗ϕ(c1, c2)f(t∗),

we get:

KIq

KIc
=

5

2

t̃
3
2
∗ − (t̃∗ − t̃0)

3
2

t̃
5
2
∗ − (t̃∗ − 1)

5
2 − (t̃∗ − t̃0)

5
2 + (t̃∗ − t̃0 − 1)

5
2

, (5.26)

where t̃∗ = t∗
τ ; t̃0 = t0

τ , and all power functions for negative values of their
arguments, are considered to be equal to zero. The corresponding graphical
dependence is shown in Fig. 5.13. The same dependence was observed in
many experiments (see, e.g., the survey of Knauss, 1984).

From (5.26) it follows that the link between the critical stress intensity
factor value and the fracture time depends on the time t0 of the external
loading increase. For bounded and semi-bounded domains this link depends
also on geometric parameters of the problem. So, for example, if L is the
crack length and KI(t) = PG(t, L), then, according to (5.18), we get:

KIq

KIc
=

τG(t∗, L)
t∗
∫

t∗−τ
G(s, L)ds

.
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Fig. 5.13.

Let us note that in (5.20), (5.25) and (5.26) time of tension increase can
tend to zero, then:

KIq

KIc
=

3

2

t̃
1
2
∗

t̃
3
2
∗ − (t̃∗ − 1)

3
2

,

which formally corresponds to an instantaneous application of a constant
stress. Thus, the qualitative link between KIq and t∗ persists even under
an ’infinite’ loading rate.

We will show that the dynamic fracture toughness can depend not only
on the loading rate and the geometric parameters of the problem. Let us
assume fracture initiation caused by means of trapezoidal impact applied
directly on the crack faces:

σy = −V [tH(t) − (t − t0)H (t − t0)] , σxy = 0 .

Then, in the infinitesimal order, on the crack plane we have:

σy =
KI(t)√

2πr
− V [tH(t) − (t − t0)H (t − t0)] + o(1), r → 0.

By the same reasoning as in the previous case, we get:

KIQ

KIc
=

5

2

t̃3/2
∗ −

(

t̃∗ − t̃0
)3/2

t̃5/2
∗ −

(

t̃∗ − 1
)5/2 −

(

t̃∗ − t̃0
)5/2

+
(

t̃∗ − 1 − t̃0
)5/2

{

1 +
τv∗
2σc

[

t̃2∗ −
(

t̃∗ − 1
)2 −

(

t̃∗ − t̃0
)2

+
(

t̃∗ − t̃0 − 1
)2
]

}

(5.27)

For relatively big fracture times the critical stress-intensity factor value
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Fig. 5.14.

tends to the quasistatic value, and also:

KIQ = KIc +
λτ

t∗
,

t∗
τ

→ ∞, λ = const

Experiments, under conditions similar to the examined ones (Ravi-
Chandar. and Knauss, 1984), have been carried out on specimens made
of Homalite-100. A structural fracture time estimation for the named ma-
terial can be made on the basis of comparison of data, found according to
the theoretical formula (5.27), to the experimental ones.

The estimated curve t0 = 25µs, KIc = 0.48 MPa
√

m, τ = 8µs and the
related experimental points, in logarithmic coordinates, are presented in
Fig. 5.14.

Ravi-Chandar and Knauss have suggested an empirical formula:

KIQ = KIc +
C

t2∗
(5.28)

permitting an analytical description of experimental data. As follows from
the results given above (see Fig. 5.14), (5.28) can be considered as an ap-
proximation of the exact formula (5.27). In this case:

C = ατ2KIc

Formula (5.27), just as (5.26), demonstrates an increasing effect of the stress
intensity factor critical value with decreasing time-to-fracture, i.e. with the
increase of the loading rate. However, in comparison to the previous case,
there are smaller stresses near the crack tip.

It should be noted that the current value of the stress intensity factor in
both cases is the same, and the difference in the way of loading manifests
itself in the value of the second term of the asymptotic representation of



104 Dynamic Strength of Continuum

Fig. 5.15.

the solution. This is, ultimately, visualised via the experimentally obtained
critical value of the stress intensity factor of crack growth initiation.

As follows from (5.27) and (5.26), the dynamic fracture toughness un-
der wave loading turns out to be smaller than under the corresponding
application of load directly on the crack faces.

Value differences for Q =
[(

KII
Iq − KI

Iq

)

/KI
Iq

]

× 100% for Homalite-100,
where superscripts I and II correspond to the first and to the second cases
respectively, are presented in Fig. 5.15. As computing results testify, the
difference in the way of loading for longer times is hardly observable via
the critical value of the stress-intensity factor.

At increasing loading rate the fracture is faster but the dependence of
dynamic fracture toughness on the way of loading becomes more conspic-
uous. Evidently, the physical mechanism, causing such an effect, is an
additional contribution of transmitted wave energy to the fracture, which
is the more powerful the less the time before fracture is. It leads to a de-
crease of the stress-intensity factor critical value necessary for creation of
material rupture. This circumstance might be one of the reasons causing
the apparent dispersion of results at experimental dynamic fracture tough-
ness determination. So, from the experiments on loading Homalite-100
with the help of high-intensive waves Dally and Barker (Dally and Barker,
1988) have obtained smaller critical values of the stress-intensity factor
than Ravi-Chandar and Knauss (Ravi-Chandar and Knauss, 1984). This
fact caused a discussion on the exactness of the experimental methods em-
ployed. The result, presented in Fig.5.15, reflects the difference in dynamic
fracture toughness values, measured in the experiments mentioned.
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5.9 Minimum and maximum pulses.
Limit characteristics of material dynamic fracture

Results of the analysis process, carried out with regard to structural-
temporal characteristics, reveals that dynamic effects depend on geometri-
cal parameters, method and history of loading, and that their interpreta-
tion can not be reduced only to a velocity dependence of dynamic fracture
toughness. It can be one of the explanations of great dispersion and in-
consistency of experimental data on dynamic fracture toughness of brittle
materials.

Threshold loads, studied in the beginning of the chapter determine min-
imal (according to energy charges) loading conditions when crack initiation
occurs. In this case the appearance of a fracture delay effect is essential:
the criterion fullfillment takes place not at the initial stage of crack growth,
but at the decrease of the current value of the stress intensity. This effect
contradicts classical mechanics of brittle fracture but is observed exper-
imentally both in tests on cleavage (see, e.g., Zlatin et al., 1975, Zlatin
et al., 1986, Nikiforovskii and Shemyakin, 1979), and in tests on fracture
of cracked specimens (see, e.g., Homma et al., 1983, Kalthoff and Shockey,
1977, Shockey et al., 1986). Here, the calculated critical values of the stress-
intensity factor (dynamic fracture toughness) turn out to be inferior to the
corresponding quasistatic value KIc for the given material. The latter is
also a very important distinctive feature of the experiments mentioned.

Together with the examined threshold loads, another situation was in-
vestigated, i.e. when the applied stress on the crack faces is maintained up
to the moment of fracture. This guarantees a monotonic increase of the
stress-intensity factor values during the whole structural-temporal interval
τ . Consequently, fulfilment of the inequality KIq > KIc is also observed
in corresponding tests (Kalthoff, 1986, Knauss, 1984, Ravi-Chandar. and
Knauss, 1984).

Thus, the use of the structural-temporal criterion (5.18) for analysis of
fast rupture in the crack-tip neighbourhood gives a possibility to calculate
dynamic fracture toughness of brittle materials. The results of application
of (5.18) to the problem of rectangulary shaped load on the crack faces are
presented in Fig. 5.16.

Curve 1 in Fig. 5.16 determines the stress-intensity factor values at the
moment of fracture under threshold loads of duration T . In this case the
material rupture occurs with a delay, i.e. at the stage of stress-intensity
factor decrease and t∗ > T , where t∗ is the fracture time.
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Fig. 5.16.

Fig. 5.17.

Curve 2 in Fig. 5.16 matches the case when a suddenly applied constant
stress operates up to the fracture moment, so that t∗ = T .

Such a dispersion of dynamic fracture toughness values, observed in the
experiments, has become a reason for discussion on correctness and exact-
ness of the experimental methods used (see, e.g., Kalthoff, 1986, Kobayashi
et al., 1973).

The analysis suggests that the behavior of the critical stress-intensity
factor is the principal peculiarity of dynamic fracture, stipulated by the
discrete, structural-temporal nature of this process.

Let us analyse the behavior of fracturing loads while their duration is
changed. Let the fracture at the crack tip be created by a rectangular-
profile stress pulse (5.19). U(T)=PT denotes the total momentum of the
external load. The computed dependence of the minimum fracture pulse
U = U∗(T ) on its duration is presented in Fig. 5.17 (curve 1).

Note that if the applied pulse is inferior to U∗, but is of the same du-
ration (through the amplitude decrease), fracture will not occur. Hence,
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all the points of the domain UT, situated below curve 1 (see Fig. 5.17),
do not correspond to fracture. An important result is that the threshold
load tends to a finite value for T →0. If we use the classical criterion of
the critical stress-intensity factor (Fig. 5.17, dashed line), we can see, that
fracture could be caused even by infinitesimal pulses, they only have to be
sufficiently short, which is obviously erroneous. However, the comparison
of the computed threshold curves gives grounds to state that for sufficiently
large values of the duration T (≥10 τ) it is possible to use the classical cri-
terion in order to evaluate fracture. Hence, the threshold load calculation
reveals a fracture delay, the existence of its lower boundary in the coor-
dinate plane UT and the finiteness of fracturing momentum values U∗ for
short times of loading.

Now we fix the loading time T , and let U be the applied and U∗ the
minimum rupturing momenta. It is obvious that for U > U∗ fracture occurs,
with the result that the fracture time exceeds the loading duration: t∗ > T .

A question arises, how large the value of U could be for fixed T . Com-
puted data show that if the pulse exceeds the threshold value to some
degree, a fracture occurs with a smaller delay. The absence of delay corre-
sponds to a coincidence of the fracture time with the load duration: t∗ = T .
Such a situation can be treated as a load applied up to the moment of frac-
ture. In rapture case this occurs just when the stress intensity factor reaches
its maximum. An attempt of further pulse increasing with the help of an
amplitude increase leads to a decrease of the duration of the applied loading
time, i.e. the fracture condition is fulfilled at time smaller than T .

Taking into consideration the aforesaid, we will call load, acting up
to the moment of fracture, maximum rupture loads and denote them U∗.
Dependence of the maximum rupture pulse on the loading time U = U∗(T )
is presented in Fig. 5.17 (curve 2).

Let us consider some peculiarities of fracture caused by maximum rup-
ture loads. At the decrease of loading time one observes the increase of U∗

in comparison to U∗, and that U∗ → ∞ for T →0. So, if it is necessary to
speed up the fracture process the condition: ’more intense the applied load
is, faster the fracture will occur’, is correct. And, lastly, to cause an instan-
taneous fracture an infinitely intense load is required. Evidently, the latter
is connected to overcoming of medium’s inertia. For large T , i.e. when
media ’manages’ to start moving, values U∗ and U∗ practically coincide.

As already noticed, points of the plane UT, placed above curve 2, could
not be reached: the fracture domain is under this curve, and at the same
time, as stated during the study of the minimum rupturing pulse, above
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curve 1. Thus, points corresponding to fracture are located between curves
1 and 2 on the plane UT.

5.10 On the material testing principles.
Dynamic strength properties

Let us classify some approaches in fracture, corresponding material strength
properties and study main possibilities of their evaluation (Morozov and
Petrov, 1992b) (Table 5.1).

# Method Material Parameters Criterion

1 Classical approach of
static fracture mechan-
ics

σc, KIC
σ ≤ σc

KI ≤ KIc

2 Classical approach of
dynamic fracture me-
chanics

σd
c (v), Kd

Ic(v)
σ(t) ≤ σd

c

KI(t) ≤ Kd
Ic

3 Stanford, Kalthoff,
Shockey

σd
c (v), Kd

Ic(v), tinc σ(t) ≤ σd
c

Minimum time crite-
rion

4 Incubation time
approach

σc, KIC , τ Incubation time crite-
rion

Table 5.1

In Table 5.1 the parameters σc and KIC are material constants and σd
c (v)

and Kd
Ic(v) are material dependent functions, representing the dependence

of critical characteristics on the loading rate v (Morozov and Petrov, 1992b).
Classical approach in dynamic fracture, based on principles of quasistat-

ics and linear fracture mechanics, connects the material dynamic strength
properties to two characteristics: σd

c (v) and Kd
Ic(v), which are considered

to be material functions. As allready noted, direct transition of static prin-
ciples into dynamic problems turns out to be uneffective: aside from the
great complexity of functions σd

c (v) and Kd
Ic(v) experimental determination

an investigator has to face a number of effects, that principally cannot be
explained utilizing the approach discussed. For example it occurs that σd

c (v)
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and Kd
Ic(v) depend not only on the loading rate, but also on other external

load parameters. Experimentally obtained values of σd
c (v) and Kd

Ic(v) are
normally characterised by significant dispersion, and, consequently, their
behavior is poorly predictable.

The minimum-time criterion, elaborated by the Stanford International
Research Center (California), includes a new material parameter tinc, the
incubation time. In comparison to the classical approach it brings a number
of new possibilities, in particular it gives a possibility to explain fracture de-
lay effect and the behavior of threshold loads. An evident deficiency of this
approach is its ’inheritance’ of all the problems of the classical approach:
the analysis in compliance with the minimum-time criterion still requires
a priori knowledge of rate dependencies of material strength and fracture
toughness.

From the point of view of the structural-temporal approach fracture
analysis combines the evident advantages of the static fracture classical
method and the efficiency of Stanford’s approach. Determining fracture
parameters are represented by three material constants: σc, KIC and τ .
Limiting values for intensity of the dynamics stress fields i.e. dynamic
strength and fracture toughness, can be considered as computed charac-
teristics. According to calculations their behavior is stipulated by strong
dependence on history and way of loading, which coincides with experimen-
tal results. However, to determine exterior loading limiting values we do
not need an a priori knowledge of these dependencies. The established link
between the fracture structural time τ and the incubation time tinc gives a
possibility to use well-known experimental methods (Homma et al., 1983,
Kalthoff and Shockey, 1977, Shockey et al., 1986) in order to obtain τ in the
case of macrocracks. An important peculiarity of the structural-temporal
approach is that it allows evaluation of fracture at the macrocrack tip and
fracture of ’intact’ materials within the framework of the same approach.
Structural time for ’intact’ media can be determined on the basis of cleavage
fracture experiments (Zlatin et al., 1974, Zlatin et al., 1975, Meshcheryakov
et al., 1988, Nikiforovskii and Shemyakin, 1979). Lastly, we emphase that
the structural-temporal criterion can be used in order to evaluate critical
load characteristics, unique for statics and dynamics, as functions of three
material constants (σc, KIC and τ).
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Chapter 6

Near tip fields in crack dynamics

Exact solution of the problem for impact loaded elas-
tic plane with a semi-infinite crack utilizing contour
integrals. Asymptotic representations of elastic fields
in a vicinity of the crack tip. Transient effects of near
tip fields in crack dynamics

6.1 Introduction

Transient effects connected to dynamic behavior of impact loaded cracks
have been studied and observed analytically, numerically and experimen-
tally for the last 50 years. Remarkable analytical solutions in crack dy-
namics belong to Yoffe (Yoffe, 1951), Ang (Ang, 1987, 1988), Freund
(Freund, 1990), Achenbach (Achenbach, 1970a-b, 1974), Eshelby (Eshelby,
1969), Broberg (Broberg, 1960, 1999) and Kostrov (Kostrov, 1966, Kostrov,
Nikitin, 1970, Kostrov, 1975). As a particular case, Kostrov’s solution gives
an exact representation of stress-strain fields in the vicinity of an impact
loaded stationary semi-infinite crack. Similar solution will be extensively
used in this chapter as a reference result, which will be compared to stress-
strain fields prescribed by leading terms of the Williams asymptotic ex-
pansion (Williams, 1957). Though utilizing Kostrov’s approach one can
achieve solutions for a wide range of problems and loads (it gives a pos-
sibility to construct a solution for arbitrary moving cracks subjected to
arbitrary loads) the result is normally very complicated and hard or even
impossible to analyze. This is one of the reasons why the stress intensity
factor is traditionally used to describe stressed conditions surrounding a
crack tip.

Another reason for this is that the first approaches in fracture dynamics
were connected with attempts to migrate Irwin’s approach (Irwin, 1957),
successful for majority of materials, geometries and loads in static condi-
tions, directly into dynamical situation.
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Williams expansion (Williams, 1957) of crack tip stress field for mode I
loaded crack reads:

σij(t, r, θ) =
KI(t)√

2πr
· φij(1, θ) +

∞
∑

n=2

Rn(t)r
n
2
−1 · φij(n, θ), (6.1)

where σ stands for stress depending on time t, distance to the crack tip r
and angle θ, indices i and j assume the values 1 and 2, KI is the mode I
stress intensity factor, changing with time. Angular functions φij(n, θ) are
given by:

φ11(n, θ) =
(

2 +
n

2
+ (−1)n

)

cos
[(n

2
− 1
)

θ
]

−
(n

2
− 1
)

cos
[(n

2
− 3
)

θ
]

,

φ22(n, θ) =
(

2 −
n

2
− (−1)n

)

cos
[(n

2
− 1
)

θ
]

−
(n

2
− 1
)

cos
[(n

2
− 3
)

θ
]

,

φ12(n, θ) = φ12(n, θ) =

=
(n

2
− 1
)

sin
[(n

2
− 3
)

θ
]

−
(n

2
+ (−1)n

)

sin
[(n

2
− 1
)

θ
]

.

In static conditions KI(t) and Rn(t) are constants. While solving qua-
sistatic problems, the first singular term of Williams expansion normally
gives a good representation of stress field adjacent to a crack tip. In this
case analysis of critical fracture conditions can be done utilizing only stress
intensity factor (SIF) — Irwin’s critical SIF criterion is applicable. In dy-
namic case KI(t) and Rn(t) change with time. Each of these functions will
depend not only on time but on loads applied as well. Therefore accuracy
of singular KI field will depend not only on a point location (i.e. r and θ)
as in statics but even on time.

Numerous researchers observed that KI field is not always correctly
reflecting results they receive while numerically solving dynamic prob-
lems of linear fracture mechanics (e.g. utilizing finite element method
(FEM), boundary element method (BEM) or meshless methods)(Ma, Fre-
und, 1986). They observe that for some class of problems, dynamic field
surrounding the vicinity of a crack tip is not KI dominated.

Though Kostrov’s solution is known for more than 50 years and is ap-
plicable to a big variety of problems, there is no general unanimity among
researchers working in fracture dynamics field about conditions and reasons
leading to appearance of these transient effects. Some authors correctly as-
sociate this with impossibility to apply KI singular field while describing
some of extremely dynamic problems.

In this chapter we determine the range of problems for which singular
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field created in a crack tip region is not KI dominated. For such problems
possibility to represent stress-strain fields with a finite number of terms of
Williams expansion is also studied. It will also be shown that for some
problems Williams expansion is not converging to real stress field. In this
case only the exact solution can give the correct description of a dynamic
process.

6.2 Problem formulation and analytical solution 1:
anti-plane case

Infinite elastic plane with a semi-infinite cut {(x1, x2)} : x2 = ±0, x1 ≤ 0
is considered. Displacement field is given by W = W (t, x), where t stands
for time and x and is coupled with stresses by:

σx1x3
= µ

∂W

∂x1
, σx2x3

= µ
∂W

∂x2
, (6.2)

where µ is the shear modulus and W is satisfying wave equation:

∂2W

∂x2
1

+
∂2W

∂x2
2

=
1

c2
2

∂2W

∂t2
, (6.3)

with c2 being the speed of the transversal wave. For negative times media
is stress free:

W |t<0 = 0. (6.4)

On the cut {(x1, x2)} : x2 = ±0, x1 ≤ 0 we suppose:

σx2x3
|x2=±0
x1<0

= 0. (6.5)

To receive a unique solution of (6.2)–(6.5) absence of energy sources in the
vicinity of a crack tip is required:

W = O(rλ), r =
√

x2
1 + x2

2 → 0, λ > 0, ∀t ≥ δ > 0 . (6.6)

Solution of (6.2)–(6.6) is well-known (e.g. Filippov, 1956). For the case
of f(t) = −PH(t), where H(t) is the Heaviside step function, solution for
stresses on crack continuation gives:

σx2x3
=

{

0, c2t < x1

2P
π

(√

c2t
x1

− 1 − arctan
√

c2t
x1

− 1
)

, c2t ≥ x1 .
(6.7)
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Expanding (6.7) into series one can get:

σx2x3
= P

(

2
√

c2t
π
√

x1
− 1 +

√
x1

π
√

c2t

)

+ O

[

(

x1

c2t

)
3
2

]

, x1 → 0, x1 ≤ c2t .

(6.8)
Corresponding value of the stress intensity factor in this case will be:

KI(t) =
2
√

2P√
π
√

c2t
. (6.9)

Suppose that the impact is not applied on the crack faces, but is delivered
to the crack region by a wave generated by load applied at infinity:

σx2x3
(t, x1, x2)|t<0 = f

(

t +
x2

c2

)

. (6.10)

In this case (6.5) is substituted by:

σx2x3
|x2=±0
x1<0

= 0. (6.11)

If f(t) = P · H(t), then the solution of (6.2), (6.3), (6.6), (6.11), (6.12)
gives:

σx2x3
=

{

P, c2t < x1

2P
π

(√

c2t
x1

− 1 − arctan
√

c2t
x1

− 1
)

+ P, c2t ≥ x1
, (6.12)

for stresses on continuation of the crack. Stress intensity factor time de-
pendence will be the same as (6.9) and series expansion of σx2x3

will differ
from (6.8) by eliminated constant pressure term — P :

σx2x3
= P

(

2
√

c2t
π
√

x1
+

√
x1

π
√

c2t

)

+ O

[

(

x1

c2t

)
3
2

]

, x1 → 0, x1 ≤ c2t . (6.13)

Using (6.7) and (6.12) it is easy to construct a solution for arbitrary f(t).
Corresponding result is achieved using time convolution of (6.7) or (6.12)
with f(t). Arbitrary load can be presented as a convolution with the Heav-
iside step function:

f(t) =

∞
∫

−∞

H(s)f ′(t − s)ds. (6.14)

Then σf
x2x3

(t, x1, x2) =
∞
∫

−∞
σx2x3

(s, x1, x2)f ′(t − s)ds,

where σx2x3
(s, x1, x2) is taken from (6.7) for the case of load applied on
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the crack faces or (6.12) for the case of load delivered by a wave, will give
a solution for stresses.

Later the solution for load that is linearly growing with time will be

used. In this case f(t) = V tH(t) = V
∞
∫

−∞
H(s)H(t − s)ds. For the case of

load applied at crack faces solution for stresses on crack continuation reads:

σx2x3
=

=

{

0, c2t<x1

2V
πc2

(

2
3

(c2t−x1)
3/2

√
x1

+
√

x1(c2t − x1)−c2t arctan
√

c2t
x1

−1
)

, c2t≥x1
.

(6.15)

Series expansion of (6.15) gives:

σx2x3
= V t

(

4
√

c2t
3π

√
x1

− 1 + 2
√

x1

π
√

c2t

)

+ O

[

(

x1

c2t

)
3
2

]

, x1 → 0, x1 ≤ c2t .

(6.16)
Corresponding stress intensity factor will be:

KI(t) =
4
√

2V

3
√
π

t
√

c2t. (6.17)

6.3 Problem formulation and analytical solution 2:
plane case

Plane dynamic problem of elasticity is considered. Homogeneous isotropic
infinite plane has a semi-infinite cut {(x1, x2)} : x2 = ±0, x1 ≤ 0 .
Stress field is given by potentials ϕ and ψ, satisfying the following con-
ditions:

∂2ϕ

∂x2
1

+
∂2ϕ

∂x2
2

=
1

c2
1

∂2ϕ

∂t2
,

∂2ψ

∂x2
1

+
∂2ψ

∂x2
2

=
1

c2
2

∂2ψ

∂t2
.

(6.18)

Here ϕ and ψ are longitudinal and transversal wave potentials, c1 is the
speed of longitudinal wave. Components of displacement u and v are cou-
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pled with ϕ and ψ by:

u =
∂ϕ

∂x1
+
∂ψ

∂x2
,

v =
∂ϕ

∂x2
−
∂ψ

∂x1
.

(6.19)

Crack faces are free from tractions:

σx2x2
|x2=±0

x1≤0
= 0,

σx1x2
|x2=±0

x1≤0
= 0.

(6.20)

Initial conditions are given by a wave approaching to the crack region from
infinity:

ψ
∣

∣

t<0
= 0,

ϕ
∣

∣

t<0
= H

(

t +
x2

c1

)

.
(6.21)

It is requested that displacements are bounded at area adjacent to the crack
tip, which guarantees the uniqueness of the solution.

Stresses can be evaluated via potentials:

σx1x1
= ρc2

1

[

∂2ϕ

∂x2
1

+
(

1 − 2γ2
) ∂2ϕ

∂x2
2

+ 2γ2 ∂2ψ

∂x1∂x2

]

,

σx2x2
= ρc2

1

[

∂2ϕ

∂x2
2

+
(

1 − 2γ2
) ∂2ϕ

∂x2
1

− 2γ2 ∂2ψ

∂x1∂x2

]

,

σx1x2
= ργ2c2

1

[

2
∂2ϕ

∂x1∂x2
−
∂2ψ

∂x2
1

+
∂2ψ

∂x2
2

]

,

(6.22)

where ρ is the mass density and γ = c1/c2.
The solution for (6.12)–(6.22) (Petrov, Utkin, 2001), received for wave

potentials is:

Ψ′(Ω) =
i
√

2γRG(Ω)
√

1 + Ω

πγ3
√

1 − γ2 (1 + γRΩ)
,

Φ′(Ω) =
iγRG(Ω)

(

1 − 2γ2Ω2
)

π
√

2γ
√

1 − γ2Ω (1 + γRΩ)
√

1 − Ω
,

(6.23)

where ψ = Re(Ψ) and ϕ = Re(Φ), with Ψ and Φ being analytical every-
where. Ω is a coordinate on a complex plane. γR = cR/c1, where cR is the
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Rayleigh wave speed. G(Ω) = exp

(

1
π

−1
∫

−1/γ

arg(R(s))
Ω−s ds

)

, with R(z) being

the Rayleigh function: R(z) =
(

1 − 2γ2z2
)

+ 4γ3z2
√

1 − z2
√

1 − γ2z2 and
arg(z) being the argument function arg(z) = −i log z

|z| .
Substituting (6.23) into (6.19) displacements can be found.
Presented formulas give the solution for load created by an elementary

longitudinal wave. Solution for load created by an elementary transversal
wave can be achieved analogously. Solutions for more complex loads can
be achieved as a time convolution of presented solution or/and solution for
transversal wave.

Using the presented solution and (6.22) stresses on continuation of a
semi-infinite crack for the problem when a load is delivered to the crack
region by a falling wave can be found:

σx2x2
= ρ

c2
1

r2
Re

[(

1 − 2γ2

(

c1t

r

)2
)

Φ′′|x2=0 − 4γ2 c1t

r
Φ′|x2=0 +

+ 2iγ





c1t

r

√

γ2

(

c1t

r

)2

− 1 Ψ′′|x2=0 +
2γ2

(

c1t
r

)2 − 1
√

γ2
(

c1t
r

)2 − 1
Ψ′|x2=0









.

(6.24)

Load corresponding to constant pressure suddenly applied on the crack
faces can be presented as a wave:

ψ
∣

∣

t<0
= 0,

ϕ
∣

∣

t<0
=

P

2ρ

(

t +
x2

c1

)2

H

(

t +
x2

c1

)

.
(6.25)

Convolution of (6.24) with loads given by (6.21) or (6.25) will give exact
solutions for plane problem with load delivered to the crack region by a
falling wave or a load applied directly on the crack faces.

Evaluating asymptotic expansion for stresses on continuation of a cut
in this problem one will get:

σx2x2
= P

2
√

2
√

c1γ
√

1 − γ2

π

[
√

t
√

x1
−

(γR + 2γRR1 − 2)

2c1γR

√
x1√
t

]

−

− P + O

[

(

x1

c1t

)3/2
]

, (6.26)
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for the case of impact applied on the crack faces and

σx2x2
= P

2
√

2
√

c1γ
√

1 − γ2

π

[
√

t
√

x1
−

(γR + 2γRR1 − 2)

2c1γR

√
x1√
t

]

+

+ O

[

(

x1

c1t

)3/2
]

, (6.27)

when the load is delivered to the crack by a wave approaching from infinity.

6.4 Accuracy of asymptotic representation of
stress state surrounding dynamically loaded crack tip

At this section accuracy of presented asymptotic solutions will be analyzed.
To compare stresses evaluated accounting several first terms of Williams ex-
pansion to exact analytical solution the following expression is introduced:

Q =

[

σ − Si

σ

]

· 100% (6.28)

Here σ = σx2x3
for anti-plane case and σ = σx2x2

for plane problem. Si is
the sum of the first i terms of Williams expansion (6.1). Thus, (6.28) gives
a relative error of asymptotic approximation.

To start with, behavior of Q at anti-plane problem with load suddenly
applied on the crack faces is discussed. To evaluate Q in this situation one
should use stress σ given by (6.7) and Si given by (6.8) taking first 1, 2 or
3 terms. Results are presented in Fig. 6.1a and 6.1b.

The horizontal axis in figures (figures 6.1a, 6.1b and all the following
figures) stands for the dimensionless value ct/x1. This value shows the
distance from the studied point x to the position on the crack continuation
where the wave front is currently situated. After the front had passed point
x, ct/x1 >1 is fulfilled. According to computational results given in figure
6.1a, if the front of the wave is less than 100*x1 away from the point with
coordinate x1 on the crack continuation, representation using only singular
term of the Williams expansion — stress intensity factor (upper curve in
figure 6.1a) is appreciably incorrect (by more than 20%). For ct/x1 >200
the misfit is considerably reduced (less than 10%). When the second term
of Williams expansion is taken into consideration (lower curve in figure 6.1a
or upper curve in figure 6.1b), the situation is improved significantly. In
this case already for ct/x1 >10 error is less than 10%. Taking the third
term of the expansion into account (lower curve in figure 6.1b) improves
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Fig. 6.1. Relative error of asymptotic series solution of anti-plane problem
with constant load suddenly applied on the crack faces:

a: upper curve — first term (SIF), lower curve — two first terms.
b: upper curve — two terms, lower curve — three terms.



122 Dynamic Strength of Continuum

the result even more. Already for ct/x1 >2 the error is below 10%. For
ct/x1 >5 the misfit between the result received using the first three terms
of Williams expansion and the exact solution is less than 1%.

To continue with, a problem for crack faces loaded by uniformly dis-
tributed pressure growing in time with a constant rate V is studied. To
receive the desired error estimation in this case one should substitute cor-
responding exact solution (6.15) and approximation (6.16) into (6.28). The
respective curves are presented in figures 6.2a and 6.2b. As we can see from
these figures, behavior of the misfit between the exact solution and the first
terms of the asymptotic expansion remains qualitatively unchanged. The
accuracy is slightly reduced.

The next problem to be analyzed is the problem with stress free crack
faces and a load given by a wave with constant amplitude P , moving from
infinity with front parallel to the crack. The exact expression for stresses
in this problem is given by (6.12) and an approximate asymptotic solution
differs from (6.8) by absence of −P term. Substituting these solutions into
(6.28) and performing computations one can receive data presented in figure
6.3. As one can see in this problem the accuracy of approximation using
only stress intensity factor is essentially better. It is even more exact than
representation using two first terms of Williams expansion in the previous
problems (figures 6.1a and 6.2a). This is connected to the fact that in
this case the term following stress intensity factor K(t) in (6.1) is missing
(R0(t)=0).

The analogous analysis is performed for solution of the problem
in the plane case. The first of the examined load options is a
uniformly distributed pressure suddenly applied on the crack faces
( σx2x2

= −PH(t), σx1x2
= 0 ). Solution for σx2x2

on the crack contin-
uation is given by convolution of stress given by (6.24) with load (6.25).
The corresponding asymptotic solution is given by (6.27). In this case both
the exact and the asymptotic solution are depending on the ratio between
longitudinal and transversal wave speeds γ=c2/c1. The misfit between the
solution achieved using only singular term of the asymptotic expansion (K)
and exact solution is presented in figure 4 for different values of γ. Accu-
racy of the approximation in a limiting case of Poisson’s ratio ν equal to 0
(γ = 1√

2
) is worse as comparing to the corresponding anti-plane problem

results. The decrease of γ (increase of ν) results in reduction of accuracy
of approximation using the stress intensity factor. This is explained by the
fact that the multiplier at square root singular term in anti-plane problem
(1/π ≈0.64) is bigger than the multiplier at the plane case (2

√
2γ
√

1 − γ2π,
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Fig. 6.2. Relative error of asymptotic series solution of anti-plane problem
with load growing at a constant rate suddenly applied on the crack faces:

a: upper curve — first term (SIF), lower curve — two first terms
b: upper curve — two terms, lower curve — three terms.
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Fig. 6.3. Relative error of asymptotic series solution of anti-plane problem with load
given by a wave with constant amplitude, moving from infinity with a front parallel to

the crack. Upper curve — first term (SIF), lower curve — two first terms.

with γ= 1√
2
−0.45). Figures 6.5a and 6.5b give a comparison of accuracy of

the asymptotic approximation using one (stress intensity factor), two and
three first terms (while γ= 1√

3
and ν =0.25). Character of the curves is

close to the character those presented in figure 6.1a. As already discussed
above, accuracy of asymptotic approximations is somewhat lower in the
plane case.

For example, at a point on the crack continuation, 10 mm distant
from the tip of the crack and a material with longitudinal wave speed
c1=5000 m/s, error achieved using the stress intensity factor approximation
will exceed 20% for times t <400 microseconds. Only for times exceeding
1200 microseconds the error is below 10%.

Figure 6.6 presents the misfit between approximation using stress inten-
sity factor or two first terms of asymptotic expansion (6.26) and the exact
solution of the plane problem for a crack loaded by a wave, approaching
from infinity with a front parallel to the crack (convolution of (6.24) with
(6.21)). Stress distribution inside the wave is given by the Heaviside step
function. The situation is similar to the anti-plane problem (figure 6.3).

As demonstrated above in the case of load applied on the crack faces
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Fig. 6.4. Relative error of SIF solution of plane problem with constant load suddenly
applied on the crack faces. Upper curve — γ=0.14 (ν =0.49), middle curve — γ=0.48

(ν =0.35), lower curve — γ= 1√
2

(ν =0).

(figures 6.1a,b and 6.5a,b), the accuracy of approximation using the first
term of the Williams expansion is less as comparing to the analogous prob-
lem where the load is created by a passing wave (figures 6.3 and 6.6). This
is due to the absence of regular terms (terms non-depending on coordinate)
in the asymptotic expansion of solutions in the case of load created by a
falling wave.

It can be demonstrated that in the case of the load applied on the
crack faces the same effect can be achieved as a result of a special choice
of a time shape for the load function. In order to do this rectangularly
shaped load pulse with amplitude P and duration T (f(t)=P [H(t)-H(t-
T)]) is applied on the crack faces. Anti-plane conditions are supposed.
In this situation for times t > T term independent on coordinate (regular
term) is vanishing. Figure 6.7 plots the misfit between approximation given
by the stress intensity factor and the exact solution for the problem. One
can see that for t > T the accuracy of solution given by stress intensity
factor is noticeably increased.
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Fig. 6.5. Relative error of asymptotic series solution of plane problem
with constant load suddenly applied on the crack faces:

a: upper curve — first term (SIF), lower curve — two first terms.
b: upper curve — two terms, lower curve — three terms.
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Fig. 6.6. Relative error of asymptotic series solution of plane problem with load given
by a wave with constant amplitude, moving from infinity with a front parallel to the

crack. Upper curve — first term (SIF), lower curve — two first terms.

6.5 Discussion

As clearly demonstrated by previous examples, behavior of asymptotic rep-
resentations of stress-strain fields in a vicinity of a crack tip in dynamic
problems is characterized by substantial non-uniformity. Obviously the ac-
curacy of representation using just stress intensity factor in dynamic prob-
lems cannot be sufficiently increased by introduction of special “dynamic
correction”, even time dependent. To achieve a correct solution in dynamic
conditions one should account terms of the Williams asymptotic expansion
following the SIF term.

Interesting observations can be made examining dependency of accu-
racy SIF stress field approximation can perform in dynamic problems on
Poisson’s ratio of the studied material (figure 6.4). One can note that
for incompressible materials (υ=1/2) infinite number of terms in Williams
asymptotic expansion should be taken in order to obtain reasonable coin-
cidence between approximation and reality. It is demonstrated (figure 6.4)
that the lager is the Poisson’s ratio of material, the worse is the approxima-
tion using the SIF. For material with υ=0.48 the misfit between real stress
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Fig. 6.7. Relative error of SIF solution of anti-plane problem with constant load of
duration T suddenly applied on the crack faces. Upper curve — T=100x1/c, lower

curve — T=10x1/c.

and stress prescribed by SIF square root singularity is exceeding 20% even
for times c1t/x1 =1000.

Presented results demonstrate the framework for problems where the
SIF can be used to describe stress-strain fields surrounding the tip of a
dynamically loaded crack. It is shown how a load (both the way a load
is applied and it’s time shape), material properties (Poisson’s ratio) and
experimental conditions (plane or anti-plane problem) can affect accuracy
of asymptotic approximations for stress-strain field in vicinity of a crack
tip. It is demonstrated that in many cases, when the SIF square root
singular field cannot provide correct approximation of dynamic stress filed
surrounding the crack tip, accounting one or two additional terms following
the SIF in power expansion can greatly improve the situation. At the same
time there are situations when infinite number of terms is needed in order
to approximate solution in an accurate way.

Although presented solutions refer to stationary dynamically loaded
cracks, we also want to discuss applicability of SIF approximation of a
singular stress field surrounding the crack tip in problems with propagat-
ing cracks. As discussed by Morozov and Petrov (Morozov, Petrov, 2000),
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the closer the crack tip speed is approaching the Rayleigh wave speed CR,
the worse is the approximation given by the SIF for stress field in vicin-
ity of the tip of the crack. Therefore, for moving cracks speed is another
important factor that is affecting the SIF approximation accuracy. Having
this in mind one may wish to revise Freund’s solution for the limiting speed
of crack propagation (ex. Freund, 1990) for mode I cracks and solutions for
permitted speeds for shear cracks (Freund, 1979, 1990, Broberg, 1989, 1994,
1995). Though we maybe do not question the fact that CR is the limiting
speed for mode I cracks in problems without local scale and microstruc-
ture since there are other physical and empirical reasons for why mode I
cracks cannot propagate with greater speeds, but obviously a revision of
solutions for shear crack propagation can give a better understanding of
recent experiments on ultrasonic dynamic cracking (Rosakis et al., 1999,
etc.).
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Chapter 7

Numerical simulations of
dynamic fracture evolution

Application of incubation time approach in numerical
simulations of dynamic crack propagation. Problems
with moving fracture zone boundaries. Impact frac-
ture of elastic media. Crater formation

7.1 Introduction

Along with prediction of initiation of dynamically loaded cracks incubation
time criterion is able to predict dynamic crack propagation, arrest, reiniti-
ation and even fracture of initially intact media. The criterion (7.3), albeit
able to predict dynamic crack initiation, cannot be used to predict crack or
fracture development in dynamic conditions. The main reason for this is
that time dependency of a stress intensity factor in the tip of a crack mov-
ing at high speeds does not directly reflect the history of stress-strain fields
in vicinity of a current crack tip location since at preceding times crack tip
was located at distant (and usually significantly distant) points of a body.
This was also discussed by Ma and Freund, 1986, and Ravi-Chandar and
Knauss, 1987.

In this chapter examples on how the incubation time approach, being
incorporated into finite element computational codes, can be used to predict
fracture initiation, propagation and arrest in real experimental conditions
are given.

7.2 Application of incubation time approach in
numerical simulations of dynamic fracture

As shown in chapters 5 and 8 the incubation time criterion (originally for-
mulated in Petrov, Morozov, 1994, Morozov, Petrov, 2000), is able to de-
scribe crack initiation in dynamic conditions. General form of the criterion
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for rupture at a point x at time t reads:

1

τ

t
∫

t−τ

1

d

x
∫

x−d

σ(x*, t*)dx*dt* ≤ σc, (7.1)

where τ is the microstructural time of a fracture process (or fracture incu-
bation time) — a parameter characterizing the response of the material on
applied dynamical loads (i.e. τ is constant for a given material and does
not depend on problem geometry, the way a load is applied, the shape of
a load pulse and its amplitude). d is the characteristic size of a fracture
process zone and is constant for the given material and chosen scale. σ is
stress at a point, changing with time and σc is its critical value (ultimate
stress or critical tensile stress found in quasistatic conditions). x* and t*
are local coordinate and time.

Assuming

d =
2

π

K2
IC

σ2
c

, (7.2)

where KIC is a critical stress intensity factor for mode I loading (mode
I fracture toughness), measured in quasistatic experimental conditions, it
can be shown that within the framework of linear fracture mechanics, for
case of fracture initiation in the tip of an existing crack, loaded by mode I,
(7.1) is equivalent to:

1

τ

t
∫

t−τ

KI(t*)dt* ≤ KIC . (7.3)

Condition (7.2) arises from the requirement that (7.1) is equivalent to Ir-
win’s criterion (KI ≥ KIC), in case of t → ∞.

As it was shown in chapter 8 as well as in many previous publications,
criterion (7.3) can be successfully used to predict fracture initiation for
brittle solids (e.g. Petrov et al., 2003, Petrov and Sitnikova, 2005). For
slow loading rates and, hence, times to fracture that are much bigger than
τ , condition (7.3) for crack initiation gives the same predictions as Irwin’s
criterion of a critical stress intensity factor. For high loading rates and
times to fracture comparable to τ all the variety of effects experimentally
observed in dynamic experiments (ex. Ravi-Chandar and Knauss, 1984a,
Kalthoff, 1986, Dally and Barker, 1988) can be obtained using (7.3) both
qualitatively and quantitatively (Petrov, 2004).
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Fig. 7.1. Experimental scheme used by
Ravi-Chandar and Knauss (1984a).

Application of condition (7.3) to the description of real experiments or
usage of (7.3) as the critical fracture condition in finite element numerical
analysis gives a possibility of better understanding of the nature of fracture
dynamicse (e.g. Bratov et al., 2004) and even predicts new effects typical
of dynamic processes (e.g. Bratov and Petrov, 2006).

Though criterion using stress intensity factor (7.3) is easier to use when
simply describing crack initiation, general form of the incubation time cri-
terion (7.1) was used even to assess early stages of fracture development.

7.3 Classical experiments of Ravi-Chandar and Knauss

Incubation time criterion was used to predict dynamic crack development
in the classical fracture dynamics experiments reported by Ravi-Chandar
and Knauss in 1984 (Ravi-Chandar, Knauss, 1984a). In these experiments a
rectangular sample with a cut simulating a crack is loaded by application of
an intense load pulse to the crack faces. Fig. 7.1 presents the experimental
scheme and Fig. 7.2 gives an approximation of the load applied on the crack
faces.

Behavior of the loaded sample is described by the Lame equations:

ρui,tt = (λ+ µ)uj,ji + µui,jj , (7.4)

where “,” refers to the partial derivative with respect to time and spatial
coordinates. ρ is the mass density, and the indices i and j assume the values
1 and 2. Displacements are given by uι in the directions xι respectively.
t stands for time, λ and µ are Lame constants. Stresses are coupled with
strains by the Hooke’s law:

σij = λδijuk,k + µ(ui,j + uj,i). (7.5)

where σij represents components of the stress tensor, δij is the Kronecker
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Fig. 7.2. Temporal shape of pressure pulse released at experiments by
Ravi-Chandar and Knauss (1984a).

delta assuming value of 1 for i = jand 0 otherwise. At t = 0 the sample is
stress free and velocity field is zero everywhere in the body:

σij |t=0 = u,t|t=0 = 0. (7.6)

Crack faces are free from tractions:

σ21|x1<0,x2=0 = 0. (7.7)

The load applied to the crack faces is given by:

σ22|x1<0,x2=0 = Af(t), (7.8)

where f(t) is given graphically in Fig. 7.2 and A is the amplitude of the
load. The load was created by electromagnetic experimental equipment.
The authors create an intense electric discharge that is passed through a
flat conductor inserted into the crack. The electric discharge results in
a repulsing force between the conductors. This creates a pressure pulse,
constant over the cut surface and with a shape and amplitude controlled
by the electric flow in the conductor, which can be easily measured.

Fig. 7.3a and Fig. 7.3b present some of the results achieved by Ravi-
Chandar and Knauss. Figure 7.3a gives the stress intensity factor history
for four of the experiments conducted. Figure 7.3b gives the crack propaga-
tion histories for the same experiments. Even though all of the experiments
presented were conducted under nominally identical conditions, the results
shown do differ. This might be explained by a slightly different charge ac-
cumulated in condensers prior to discharge through a conductor, resulting
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Fig. 7.3. a — Stress intensity factor histories for crack arrest experiments
(Ravi-Chandar and Knauss, 1984a), b — Crack extension histories for crack
arrest experiments (Ravi-Chandar and Knauss, 1984a).
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in slightly different amplitude of electric flow and, hence, a different am-
plitude of pressure created on the crack surfaces. Another possible reason
for this difference that the authors mention is a slight disparity in sample
geometry from one experiment to another.

Unfortunately, in the article by Ravi-Chandar and Knauss information
about the amplitude of pressure created in the presented experiments (Ravi-
Chandar, Knauss, 1984a) is missing. Moveover, as it can be seen from Fig.
7.3b, at t = 0 the initial crack is already prestressed (KI (0) 5= 0).

To check applicability of (7.1) to predict dynamic crack propagation
experimental conditions of (Ravi-Chandar, Knauss, 1984a) were modeled
utilizing the finite element method.

7.4 Finite element formulation

In order to obtain a closed mathematical description of the dynamic fracture
problem (7.4)–(7.8) is supplemented with fracture criterion (7.1). Due to
symmetry, we suppose that the crack can propagate only along the x1

axis. When condition (7.1) is fulfilled somewhere along the crack path, we
suppose creation of a new surface in that point. Time integration in (7.1)
is performed numerically using the trapezoidal rule.

The problem defined by (7.1) and (7.4)–(7.8) is solved numerically uti-
lizing the finite element method. ANSYS finite element package was used
to implement (7.4)–(7.8), and the fulfillment of condition (7.1) was checked
by an external program after each time step (ANSYS User’s Guide, 2006).

Rectangular 4-node elements were used to mesh a body. The size of

elements along the crack path was taken to be exactly d = 2
π

K2
IC
σ2

c
. The

reason for such a choice of element size is that d is a size that characterizes
fracture on a chosen scale. From this point of view all the defects and spatial
discontinuities with sizes essentially less than d cannot be called fractures
within the framework of the scale used. Since critical stress intensity factors
and ultimate stresses evaluated in laboratory conditions are used, then, by
this, a scale to be used is set up. If, searching for KIC and σc, one will use
experiments performed on, for example, geological or microscopic scales,
one will get values for the studied fracture parameters, different from those
acquired while testing specimens on a laboratory scale, and, hence one will
get a different value for d, giving a characteristic size for the scale one is
currently using.

Following this idea, the size of an element used in the FE model along
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Fig. 7.4. a — Mesh used in the FE model, b — Mesh surrounding the crack tip.

the crack path is the minimal size of a crack that we can call a “fracture”.
Analogously, d is the minimal increment of a crack length that we can call
“crack propagation” on a chosen scale. In the FE model used, release of
a node along the crack path increases existing crack length by d — basic
crack propagation takes place. Such a choice of the element size simplifies
spatial integration in (7.1) as well.

Due to the symmetry of the problem across the x1 axis the problem was
solved only for the upper half of the sample. Dimensions of the modeled
sample were the same as in the experiments of Ravi-Chandar and Knauss
(Ravi-Chandar and Knauss, 1984a). Fig. 7.4a presents a mesh used in the
solution. Fig. 7.4b gives details on the mesh surrounding the crack tip. The
crack can propagate along the x1 axis within the zone with the fine mesh
adjacent to the crack tip. The length of this zone is 17 mm.
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A total of 18,621 nodes and 18,404 elements was used to form the mesh.
Small elements with sizes equal to d were placed adjacent to the crack path
to provide the needed accuracy of computation. Distant elements are larger
in order to minimize the computational time and expense.

Due to the symmetry of the problem the crack path should follow the
x1-axis. Nodes along the path were subjected to symmetrical boundary
conditions up to the moment when the condition (7.1) is satisfied at a par-
ticular node (node movements in the vertical direction are restricted). At
this moment the restriction on movement of the particular node is removed
and a new surface is created. The technique used is similar to the node
release technique.

The shape of the pressure pulse applied on the crack faces is given by
Fig. 7.2, and its amplitude A is alternated in simulations. Material parame-
ters typical of Homalite-100, used in the experiments of Ravi-Chandar and
Knauss, were used in the calculations. These parameters are presented in
Table 7.1.

Density, ρ, kg
m3 1230

Young’s modulus, E, MPa 3900

Poisson’s ratio, ν 0.35

Critical stress intensity factor, KIC , MPa
√

m 0.48

Ultimate tensile stress, σc, MPa 48

Incubation time of fracture, τ , µs 9

Table 7.1

The microstructural time of the fracture process, τ , for Homalite-100
was found by Petrov et al. (Petrov et al., 2003) from the analysis of exper-
iments of Ravi-Chandar and Knauss (Ravi-Chandar and Knauss, 1984a).
The values of the critical stress intensity factor and the ultimate tensile
stress gives a value for d. It appears to be 0.1 mm for Homalite-100 on a
laboratory size scale.

The constructed model was checked for convergence. Usage of smaller
time steps and smaller elements does not significantly affect the computa-
tional results. The ability of the FEM model to solve the stated dynamic
problem was also checked by comparison of computational results to the
analytical solution for the stress intensity factor in the tip of a crack prior
to crack initiation. The analytical solution for KI temporal dependence in
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Fig. 7.5. Dependence of normalized stress intensity factor at crack initiation on
normalized time-to-fracture. Comparison of experimental data to analytical result

received using crack initiation criterion (3).

the studied problem is given, for example, in Petrov and Morozov (Petrov,
Morozov, 1994). The FEM computed KI temporal dependence matches
the analytical result with a maximum disparity of not more then 5%. The
good matching between the computational and analytical result shows the
applicability of the constructed model to the investigation of the problem
stated by (7.4)–(7.8). Fig. 7.5 gives a comparison between the experimental
data of Ravi-Chandar and Knauss for the stress intensity factor at crack
initiation for different times-to-fracture (i.e. different amplitudes of applied
load pulse) and the analytical solution using criterion (7.3) (Ravi-Chandar
and Knauss, 1984a). The figure is reprinted from Petrov and Morozov
(Petrov, Morozov, 1994). This result shows that criterion (7.1), being a
more general form of (7.3), has an ability to describe the crack initiation
problem.

7.5 Solution results

After the stated problem is solved by the ANSYS FEM package, together
with an external program controlling crack propagation, information about
KI time dependency and the crack extension history is provided for further
analysis. KI(t) is computed using the asymptotic behavior of the stress
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Fig. 7.6. a — Crack extension history. A =5 MPa, b — Crack extension history.
A= 12 MPa.

field surrounding the crack tip.
It was observed that, depending on the amplitude of the applied pres-

sure pulse A, three different modes of crack propagation are possible. The
first one is trivial — amplitude that is too low results in no crack exten-
sion. The second one is the mode observed by Ravi-Chandar and Knauss
(Fig. 7.3b). The crack starts propagating at a constant speed. Then it
arrests, due to the energy flow into the crack tip which is no longer suffi-
cient for its propagation. When the energy from the second trapezoid of
the loading pulse approaches the crack tip region, the crack reinitiates and
starts propagating at approximately the same speed as in the first stage of
its extension (Fig. 7.6a).

Further increase of load amplitude A results in a propagation mode
change. Now the crack is initiated, propagates at some constant speed, and
when the energy from the second part of the loading pulse is delivered to
the crack tip region the crack is accelerated and continues propagation at
a higher speed (Fig. 7.6b).

By adjusting the pressure amplitude A, it was found that amplitudes
around 5 MPa result in crack extension histories very close to those ob-
served by Ravi-Chandar and Knauss (Ravi-Chandar and Knauss, 1984a).
In Fig. 7.7, the computational result for A=5.1 MPa is compared to one of
the experiments presented in Fig. 7.3b.
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Fig. 7.7. Crack extension history. Comparison of FEM calculation with experimental
data points of Ravi-Chandar and Knauss (1984a).

7.6 Conclusions on dynamic crack simulations

It has been shown that, solving the dynamic problem of linear elasticity by
FEM and criterion (7.1) being used to assess critical conditions for crack
advancement, the propagation of dynamically loaded cracks can be pre-
dicted. It has also been shown that criterion (7.1) with d, chosen from the
condition of coincidence of (7.1) with Irwin’s criterion in static conditions
can be used to describe dynamic crack initiation, propagation and arrest.

Criterion (7.1), unlike (7.3), which is applicable only to crack initiation
problems, can also be used as the condition for crack propagation and
arrest. In the presented model (7.3) is used as a condition for node release.
This criterion does not even require the presence of a crack. Thus, the
condition for crack propagation and arrest appears automatically. The
crack propagates whilst (7.1) is fulfilled for nodes ahead of the moving
crack tip; otherwise the crack arrests.

Using a similar method one can model cracks that change their direction
of propagation and even branch. In this case (7.1) should be applied not
only to stresses acting perpendicular to the x1 direction, as is done in the
presented research, but in all the possible directions surrounding the x*
point.

According to the incubation-time based approach (see Petrov, 1991, or
Petrov, Morozov, 1994) in combination with a variety of widely known
experimental observations the critical stress intensity factor at the crack
initiation moment under high rate loads may, depending on the experimen-
tal geometry, loading conditions and history, either be noticeably smaller
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or greater than KIC . This instability of dynamic fracture toughness is par-
ticularly evident while comparing two different load application histories
(Petrov et al., 2003). In the first case, a suddenly applied dynamic load is
maintained at a constant level up to the moment of crack initiation (e.g.
Smith, 1975, Ravi-Chandar and Knauss, 1984a, Rizal and Homma, 2000,
Homma et al., 1992). In this case Kd

I usually significantly exceeds the static
KIC . In the second case, when the fracture is excited by short load pulses
with time shapes close to the delta function, threshold amplitude, Kd

I is
usually significantly less than KIC (e.g. Atroshenko et al., 2002, Shokey et.
al, 1986).

This reasoning shows that the dynamic fracture toughness, Kd
I , is not

an intrinsic characteristic of a material and that usage of critical stress
intensity factor criterion (KI(t) ≥ Kd

I ) to describe dynamic fracture initia-
tion cannot be universally correct. For the same reasons it is impossible to
describe dynamic fracture initiation using rate dependent Kd

I . Application
of the incubation-time based approach allows one to describe all the vari-
ety of experimentally observed effects in fracture dynamics. An important
consequence of this approach is that it provides an effective way of test-
ing dynamic strength by direct measurement of τ , a parameter intrinsic to
the material and not dependent on experimental geometry or the way the
load is applied (Petrov, 2004). This provides a tool that can be directly
incorporated into practical engineering.

The results presented in above show that a similar approach can be
successfully used to describe dynamic crack propagation and arrest.

7.7 Simulation of SMART1 satellite
impacting the Moon surface

As shown above, incubation time fracture criterion (7.1) can be applied to
study the evolution of the fracture process. This includes not only a sim-
ulation of crack propagation in bodies with initial cracks but also fracture
of initially intact media. In this section an example of how the incubation
time approach can be incorporated into the finite element code in order
to simulate fracture of initially intact media is presented. The example
presented is the simulation of conditions of satellite SMART1 lunar im-
pact conducted by European Space Agency year 2006 (ESA, 2006a, ESA,
2006b). Aim of the simulation is to compare dimensions of crater created
due to SMART1 contact to the Moon surface to the results received us-
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ing finite element method utilizing incubation time criterion as the critical
rupture condition.

An approach similar to the one used to predict crack propagation in
the experiments of Ravi-Chandar and Knauss (Ravi-Chandar and Knauss,
1984a), can be used to simulate fracture of initially intact media. The differ-
ence is that in this case finite element code should trace fracture condition
fulfilment in all the nodes of the modelled sample and be able to create
a new surface in respective points once rupture criterion is implemented
somewhere in the body.

The traditional way to create a new surface in finite element formula-
tion is associated with splitting of the existing nodes. Using this approach
is reasonable in most cases, though this normally requires remeshing and
remapping, that are rather time consuming procedures. For the studied
problem the situation is different. To guarantee correct integration in (7.1)
one should use small (as comparing to τ) time steps. Thus the solution is
resulting in long series of tiny substeps. Solution (convergence) on every
substep is achieved comparably fast — finite element solver is almost not
iterating. It was found, that in this case it is more effective to use multiple
nodes in the same location from the beginning, rather than to split the node
in question. Each element the full model is constructed of, is not sharing
nodes with other elements.

2-D problem with rotational symmetry is solved. Quadratic 4-node
elements are used. Dimensions of every element is exactly d times d (where
d is given by (7.2)). Obviously, 4 nodes have the same location for inner
points of a body and 2 nodes have the same location for the points belonging
to the boundary. These nodes originally have their dimensions of freedom
(DOF’s) coupled. This results in exactly the same FE solution before the
fracture condition is implemented in a respective point as if elements had
shared nodes. When the fracture condition is fulfilled, restriction on nodes
DOF’s is removed — a new surface is created. This is done automatically
by finite element code after every substep.

Figure 7.8 gives a schematic representation of the internal points of a
body. Originally all the 4 nodes sharing the same location have all of their
DOF’s coupled. Condition (7.1) for this point can be written as:

1

τ

t
∫

t−τ

σii(t*)dt* ≥ σc, (7.9)

where i assumes values 1 and 2. Repeating indices does not dictate sum-
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Fig. 7.8. Model consisting of elements without shared nodes.

mation in this case. Spatial integration is removed, because the stress in
the respective direction calculated by finite element program is already a
mean value over size d (as d is the element size being used). If (7.9) is
fulfilled for σ11 or σ22 then displacements of nodes 1,2,3 and 4 on figure 7.8
get uncoupled. If (7.9) is fulfilled for σ11, two new couple sets consisting
of nodes 1, 2 and 3,4 are created. If (7.9) is fulfilled for σ22, new couple
sets are created for nodes 1, 3 and 2,4. For later times condition (7.9) in
applicable direction is traced for newly created couple sets separately.

The problem is solved for a half-space x2 < 0. (7.4)–(7.6) give state
equations and initial conditions for the half-space. Half-space represent-
ing the Moon had following material properties: σc=10.5 MPa, KIC =
2.94MPa

√
m,τ = 80µs,E=60 GPa, ρ=2850 kg/m3, ν=0.25 typical for

earth basalt. This results in d = 5 cm. Half-space is impacted by a cylinder
with diameter of 1 meter and height of 1 meter. Density for the cylinder
is chosen so that its mass coincides with the one of SMART1 satellite. We
suppose that the material of the cylinder is linear elastic and has no possi-
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Fig. 7.9. FE model overview.

bility to fracture. SMART1 satellite had a form close to cubic with side of
1 meter and had a mass of 366 kg. SMART1 impacted the Moon surface at
a speed of approximately 2000 m/s. In finite element formulation the cylin-
der was given an initial speed of 2000 m/s prior its contact to the half-space
boundary. Figure 7.9 gives an overview of the finite element model. The
size of the sample, representing the half-space is chosen from a condition
that the waves reflected from the sample boundaries are not returning to
the region where the crater is formed in the process of simulation.

ANSYS finite element package (ANSYS, 2006) was used to solve the
stated problem. Control of the fracture condition (7.9) fulfillment in all
of the sample points and new surface creation when rupture criterion is
implemented was carried out by a separate ANSYS ADPL subroutine.

Figure 7.10 shows the sample state after the simulation is finished. Dam-
age localized at down part of the sample is due to finite dimensions of the
sample and represents cleavage fracture that occurred after compressive
waves were reflected from the lower boundary. In figure 7.11 locations of
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Fig. 7.10. Sample after impact.

Fig. 7.11. Locations of ruptured nodes.

nodes where the fracture occurred are marked. This gives a possibility to
assess dimensions of the crater formed after the SMART1 impact. The dam-
aged zone is found to be about 10 meters in diameter and about 3 meters
deep. The zone where the material was fully fragmented (the crater formed)
can be assessed having 7–10 meters in diameter and 3 meters deep. This
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result coincides with ESA estimations of dimensions of the crater formed
due to the SMART1 impact (ESA, 2006a, ESA, 2006b).

7.8 Conclusions

Incubation time fracture criterion has a wide area of applicability. As real
dynamic fracture problems rarely can be solved analytically, the majority
of applications require numerical simulations. In this connection incubation
time approach has a significant advantage — it can be applied in order to
receive a correct description of both quasistatic and dynamic fracture, so
one does not have to use separate criteria for different load rates. It is shown
that using incubation time criterion incorporated into finite element code
a correct description of dynamic fracture initiation, dynamic crack propa-
gation and fracture of initially fractured media is possible. It is remarkable
that staying within the framework of linear elastic fracture mechanics, it is
possible to predict all the variety of effects inherent in dynamic fracture.
And all this is possible while utilizing a rather simple fracture model, not
incorporating complicated cohesive laws. The same approach can be used
to model dynamic crack arrest, dynamic cleavage etc.
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Chapter 8

Energy input optimization problems

Possibility to optimize energy input for fracture and
structural transformations on the basis of analysis us-
ing the incubation time theory. Evaluation of optimal
energy saving parameters in rock fracture, cavitation
of liquids and detonation of gaseous media

8.1 Introduction

Possibility to optimize (minimize) energy needed to create structural trans-
formations is of importance that is hard to overestimate in connection to
a variety of industrial processes. Here we can mention mining and further
rock processing, drilling, detonation initiation (for example, in connection
to pulsed detonation engines). In cavitation problems one is usually in-
terested in maximization of energy that can be radiated into liquid media
without uncontrolled growth of voids (cavitation).

Criteria for structural transformations discussed in the previous chap-
ters (fracture, detonation initiation, cavitation, electric breakdown) based
on the idea of the incubation time provides a tool that can, with relative
simplicity, be used to predict optimal parameters for pulsed energy input
in different industrial processes.

In this chapter available experimental data on high rate fracture of dif-
ferent rock materials is presented and analyzed in order to evaluate incu-
bation time of fracture for these materials to use in incubation time based
fracture criteria. On the basis of the incubation time theory and evaluated
parameters possibility to optimize (minimize) energy input for fracture is
studied in connection to industrial rock fracture processes. Possibility to
optimise energy input for detonation initiation and cavitation in liquids is
also demonstrated.
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8.2 Rock fracture dynamics

Understanding mechanisms underlying dynamic fracture of rock is one of
the central challenges in the modern rock mechanics. Dynamic range loads
working for fracture or fragmentation of rock represent the essence of many
industrial processes in mining and further handling of rock. Though for
several decades it is known and generally recognized that the static frac-
ture criteria (critical stress criterion for fracture of intact media and Irwin’s
critical stress intensity factor criterion for fracture of cracked bodies) are
not applicable to study fracture caused by loads of dynamic range, no con-
ventional approach to the problem is formed to the moment.

In chapter 5 a criterion able to describe all the variety of experimentally
observed effects typical of dynamic fracture was discussed. It was shown
that staying within the framework of linear elastic fracture mechanics it
is possible to describe all the features typical of fracture caused by high
rate loads. And even more attractive is the fact, that the same critical
fracture condition can be used for all load rates — from quasistatic situa-
tions, when incubation time criterion repeats classical fracture criteria, to
extreme dynamic conditions, when incubation time criterion is in a very
good qualitative and quantitative agreement with experimentally observed
processes.

8.3 Prediction of dynamic fracture
toughness for rock materials

An important conclusion from the previous chapters is that in order to
use incubation time fracture criterion for practical predictions of critical
rupture conditions one should supplement static material specific strength
parameters (ultimate stress σc and critical stress intensity factor KIC),
that are known for majority or rock materials, with incubation time of
the fracture process for the material in question (τ). In this section the
theoretical background for one class of experiments aimed for evaluation
of τ is given and corresponding experimental results for rock materials are
presented.

An infinite plane with a semi infinite crack ({x1,x2}:x2=0, x1 <0) is
considered. Plane strain conditions are supposed. The load is given as a
pressure pulse applied on the crack faces. Displacements of the plane are
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described by:

ρui,tt = (λ+ µ)uj,ji + µui,jj , (8.1)

where “,” refers to the partial derivative with respect to time and spatial
coordinates. ρ is the mass density, and the indices i and j assume the values
1 and 2. Displacements are given by uι in the directions xι respectively.
t stands for time, λ and µ are Lame constants. Stresses and strains are
coupled by Hooke’s law:

σij = λδijuk,k + µ(ui,j + uj,i), (8.2)

where σij represents stresses in direction ij, δij is the Kronecker delta as-
suming value of 1 for i = jand 0 otherwise. For negative times the plane is
stress free and velocity field is zero everywhere in the body:

σij |t<0 = u,t|t<0 = 0. (8.3)

Crack faces are free from tractions:

σ21|x1<0,x2=0 = 0. (8.4)

Load on the crack faces is given by:

σ22|x1<0,x2=0 = −p(t). (8.5)

It is assumed that the leading term of Williams asymptotic expansion of
crack tip stresses is controlling the stress field on the crack continuation:

σ22

∣

∣

∣

∣

x1>0,x2=0 =
KI(t)√
2πx1

+ O(1), x1 → 0. (8.6)

Rectangular shaped load pulse is applied on the crack faces:

p(t) = P [H(t) − H(t − t0)] , (8.7)

where P and t0 prescribe amplitude and duration for the load pulse and
H(t) denotes the Heaviside step function. Solving (8.1)–(8.7) one can find
stress intensity factor history:

KI(t) = Pϕ(c1, c2)
[√

tH(t) −
√

t − t0H(t − t0)
]

(8.8)

where

ϕ(c1, c2) =
4c2

√

c2
1 − c2

2

c1
√
πc1

,
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with c1 and c2 being the speeds of longitudinal and transversal wave in the
studied material.

Supposing the amplitude of the load pulse is the threshold one (i.e.
the minimal possible amplitude resulting in crack extension), time when
incubation time fracture condition (7.3) is fulfilled can be found from:

I(t) = KICτ, I(t) =

t
∫

t−τ

KI(s)ds. (8.9)

Substituting KI from (8.8) into (8.9) one can get:

I(t) =
2

3
Pϕ(c1, c2)

[

t
2
3 H(t) − (t − τ)

2
3 H(t − τ)

]

−

−
2

3
Pϕ(c1, c2)

[

(t − t0)
2
3 H(t − t0) + (t − τ − t0)

2
3 H(t − τ − t0)

]

(8.10)

Obviously I(t) reaches its maximum overtime value at t = t′:

t′ =
1

3

[

τ + t0 + 2
√

τ2 − τt0 + t20

]

(8.11)

Thus, conducting series of experiments on cracked plates with such sizes,
that the waves from the specimen boundaries are not reaching crack tip
prior to crack initiation, tending to find the threshold load amplitude for
pulses with given duration t0, one can obtain value of the incubation time
τ for material tested. Table 8.1 gives the values for critical stress intensity
factor, ultimate stress and incubation time for several rock materials. Data
presented in table 8.1 was experimentally evaluated in Research Center of

Material σc,
MPa

KIC ,
MPa

√
m

d,
mm

τ,
µs

1.
2.
3.
4.
5.
6.

Limestone
Gabbro-Diabase
Marble
Sandstone
Granite
Clay

12.40
44.04
6.19
31.18
19.50
1.63

1.31
2.36
1.34
1.19
2.40
0.12

7.11
1.83
30.00
0.93
1.95
3.45

15
40
44
54
72
75

Table 8.1: Fracture properties of some rock materials
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Fig. 8.1. Time-to-fracture — load duration curves for rock materials. 1 — limestone,
2 — gabbro-diabase, 3 — marble, 4 — sandstone, 5 — granite, 6 — clay.

Dynamics (St.Petersburg State University) by Petrov et al. (Petrov et al.,
2005). Value for d is calculated utilizing (7.2).

Figure 8.1 reflects experimentally observed dependencies of time-to-
fracture t′ on a threshold pulse duration t0 for such materials. Presented
curves computed by incubation time criterion using parameters from table
8.1 are in a very good coincidence with experimentally observed behavior.

8.4 Optimization of energy input in industrial processes
connected with fracture of rock materials

A possibility to optimize the amount of energy, required to fracture mate-
rials is of a large interest in connection to numerous applications. Energy
inputs for fracture induced by short pulsed loadings are of the major im-
portance in such areas as percussive, explosive, hydraulic, electro-pulse and
other means of mining, drilling, pounding etc. In these cases energy input
usually accounts for the largest part of the process cost (see, for exam-
ple, Royal Dutch Petroleum Company Annual Report, 2003). Taking into
consideration the fact that the efficiency of the mentioned processes rarely
exceeds few percent the importance of energy input optimization gets evi-
dent.

The purpose of the presented investigation is to find and explore the
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Fig. 8.2. Experiment scheme. Central crack in an infinite plane is loaded by a wave
approaching from infinity. Wave front is parallel to the crack plane.

amount of energy sufficient to initiate the propagation of a mode I loaded
central crack in a plate subjected to plane strain deformation. Two ways
to apply the dynamic load to the body are studied. In the first case the
load is applied at infinity. The study involves the analysis of interaction of
the wave package approaching from infinity with an existing central crack
in a plane. The existing crack is oriented parallel to the front of the wave
package. In the second case the load is applied on the crack faces. Tractions
are normal to the crack faces.

Following the superposition principle these two loading cases should
produce identical stress-strain field in the vicinity of the crack tip. It will
be shown later that the amount of total energy applied to the body needed
to initiate crack growth is depending on the load application manner in
different way for the two cases under investigation.

8.5 Load applied at infinity

Consider an infinite plane with a central crack (Fig. 8.2). The load is given
by the wave falling on the crack. Displacements of the plane are described
by (8.1). Stresses and strains are coupled by Hooke’s law (8.2). Boundary
conditions are:

σ22||x1|<l,x2=0 = σ21||x1|<l,x2=0 = 0. (8.12)
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The impact is delivered to the crack by the falling wave:

σ22|t<0 = P

(

H

(

t +
x2

c1

)

+ H

(

t −
x2

c1

)

−

−H

(

t +
x2

c1
− T

)

− H

(

t −
x2

c1
− T

))

, (8.13)

where c1 is the longitudinal wave speed, H is the Heaviside step function
and T is the impact duration. P represents the pressure pulse amplitude
and has a dimension of Pa. The described problem is solved using finite
element method.

8.6 Modelling interaction of the
wave coming from infinity with the crack

The process is analyzed utilizing the finite element method. ABAQUS (see
ABAQUS USER MANUAL) finite element package was used to solve the
problem. The task was formulated for a quarter sample using the sym-
metry of the problem about x- and y-axes. Plane strain conditions were
supposed. Area adjacent to the crack tip was meshed by triangular isopara-
metric quarter-point elements available in ABAQUS package. Thus, mesh
in the vicinity of the crack tip may assume a square root singularity in
stress/strain fields. The total of about 30E5 elements was used to model
the cracked sample. Crack surface was represented by 50 nodes along the
crack’s half-length. Explicit time integration was utilized to solve the dy-
namic problem in question.

Computations were performed for granite (E = 96.5 GPa, ρ = 2810
kg/m3, υ = 0.29, where E is the elasticity modulus, ρ is the mass density
and υ the Poisson’s ratio). The results of investigation will qualitatively
hold for a big variety of quasi-brittle materials. In conditions of the plane
strain interaction of the wave approaching from infinity with a central crack
was investigated.

Firstly, infinite pulse durations were supposed, i.e. T = 1. Time depen-
dence of the stress intensity factor KI was studied. KI used in a further
analysis was calculated from J-integral that is available as a direct output
from ABAQUS solution. Computations were performed for different am-
plitudes of the loading pulse applied. Typical dependence of KI on time is
presented in Fig. 8.3.
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Fig. 8.3. Typical stress intensity factor (Pa
√

m) time (µs) dependence in FE solution.

Apparently, KI is rapidly approaching the static level. Thus, the time
to approach the steady-state situation in a vicinity of a crack tip can be
estimated as 5–10 times more than the time required by the wave to travel
along a crack’s half-length.

Fracture criterion fulfilment was checked for different load amplitudes
and durations. Dependence of time-to-fracture T * on the amplitude of
the load applied was investigated. Time-to-fracture is the time from the
beginning of interaction between the wave package and the crack to the
crack start. Incubation time criterion of fracture (Chapter 5, Morozov and
Petrov, 2000) was chosen to be used. Similar approach to be used in case of
short cracks is given by Petrov and Taraban (Petrov and Taraban, 1997).

Using the incubation time criterion the dependence of time-to-fracture
on the amplitude of the load pulse applied was studied. Values of KIC =
2 − 4Mpa

√
m and τ = 72µs typical for granite (Table 8.1) were used. In-

tegration of the temporary dependence of stress intensity factor was done
numerically. In Fig. 8.4 x-axis represents the time from the beginning of
interaction of the wave coming from infinity with the crack to the fracture
initiation. y-axis represents the corresponding amplitude of the load ap-
plied at infinity. Point in Fig. 8.4 marked with a cross corresponds to the
maximum possible time-to-fracture for the given problem. As follows, for
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Fig. 8.4. Curve limiting the pulses leading to crack propagation. Time-to-fracture (ls)
vs. applied pressure amplitude (Pa).

investigated granite and studied experimental conditions fracture is only
possible for times less than 92 µs.

At the same time the critical (threshold) amplitude of the applied load
was found. This amplitude corresponds to the maximum time-to-fracture
possible. Loads with amplitudes less than the critical one do not increment
the crack’s length.

8.7 Dependence of the energy inputs for
fracture on the load amplitude and duration

At this point we examine the specific momentum transferred to the plane
under investigation by a loading device. In our case

P (t) = P (H (t) − H (t − T )) , (8.14)

so the specific (per unit of length) momentum of the impact will be:

R = PT. (8.15)

Area filled in Fig. 8.5 corresponds to a set of momentum values causing
fracture. For the values not belonging this area crack propagation does
not occur. The minimum value for the momentum incrementing the crack
length (44.7 kg m/s) is reached at load with duration of 72 µs while the
amplitude of the load exceeds the minimal one by more than 10%.

Now we come to examination of the energy transmitted to the sample
by a virtual loading device in the process of impact. The shape of the load
applied is given by (8.15). A specific (per unit of length) energy transmitted
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Fig. 8.5. Filled area corresponds to a set of possible pulses leading to crack initiation.
At T =72 µs momentum R (kg m/s) needed to advance the crack is minimized.

to the stripe can be calculated using solution for the uniformly distributed
load acting on a half plane.

This problem can be easily solved utilizing D’Lambet method. Solution
for a specific energy transmitted to the half plane appears to be:

εspec =
1

ρc

T
∫

0

P 2(t)dt. (8.16)

c here is the same as c1 and gives the longitudinal wave speed. This result
can be used for the problem under investigation as interaction of the loading
device and the sample is finished before the waves reflected from the crack
come back. Substitution of (8.14) into (8.18) gives εspec = P 2T

cρ .
Analogously to Fig. 8.5, we plot a limiting curve for a set of energies that,

being transmitted to the sample, cause the crack propagation (Fig. 8.6).
Minimum energy able to increment the crack length (172E6 J) is

reached at load pulses with duration of 78 µs. As it is evident from Fig. 8.6,
minimal energy, required to propagate the crack by impacts with durations
differing much from the optimal one, significantly exceeds the minimal pos-
sible value. Thus, minimum energy, incrementing the crack for the load
with duration of 92 µs (at this impact duration crack propagation is pos-
sible from the impact of threshold amplitude), will exceed minimal energy
possible by 10%, and at duration of 40 µs it will be more than two times
bigger.
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Fig. 8.6. Filled area corresponds to a set of possible pulses leading to crack initiation.
At T = 78 ls energy e (J) needed to advance the crack is minimized.

8.8 Case of a load applied on the crack faces

Now we consider a problem similar to the previous one, but with the load
applied not at infinity but on the crack faces. The problem is solved numer-
ically and in the same manner as the one for the load applied at infinity.
Obviously, according to the superposition principle, the solution will co-
incide with the one for the stripe stretched by a load applied at infinity.
Thus, all the consequences of the previous solution are applicable, except
for estimations of energy. Specific momentum transmitted to the sample
will be the same as the one in the previous problem.

It is not possible to estimate energy transmitted to the sample analyti-
cally for the situation, when the load is applied at the crack faces. However,
the finite element solution can be used in this case to estimate this energy.
Fig. 8.7 represents time dependence of full, kinetic and potential energies
of deformation contained in a loaded sample for a particular pressure am-
plitude.

Firstly, the kinetic energy is growing linearly along with the potential
one, in the same manner as it happens in the case with the loaded half-
plane. However, at the moment of time equal to the time sufficient for a
wave to travel along the crack length, kinetic energy is starting to transform
into potential energy of deformation. Some part of the energy is returned
to the loading device.

Limiting curve for the set of energies incrementing the crack length is
presented in Fig. 8a. As it can be noticed in the case of the load applied
at the crack faces, the energy input to increment the crack length has no
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Fig. 8.7. Transmitted energy (J) time (µs) dependence.

Fig. 8.8. Energy minimization. Possible energy (J) quantities transmitted to a sample
by a loading device depending on load duration (µs). (b) Enlarges part of (a).

marked minimum. Minimum energy needed to produce fracture in this case
is decreasing with the growth of load duration. When the duration is equal
to maximal time-to-fracture possible, energy reaches the minimal value.

Fig. 8b enlarges the area adjacent to the point where the minimal energy
is firstly reached in Fig. 8a. As follows from Fig. 8b for the pulse durations
close to the maximal possible time-to-fracture (92 µs), minimal energy input
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needed to increment the crack is not much different from the minimum value
firstly achieved at 92 µs.

8.9 Optimization of the load parameters to
minimize energy cost for the crack growth

With the majority of non-explosive methods used to fracture materials
(drilling, grinding, etc.) it is possible to control amplitude and frequency
of impacts from the side of a rupture machine. The performed modelling
shows that at a certain load duration (at impact fracture of big volumes
of material pulse duration is connected to the frequency of the machine
impacts) energy inputs for crack propagation have a marked minimum.

Analogously to Fig. 8.6 it is possible to plot the limiting curve for the
set of energy values leading to propagation of a crack in the sample at
different load amplitudes. This is done in Fig. 8.9. Thus, it is possible to
establish ranges of amplitudes and frequencies of load at which energy costs
for fracture of the material are minimized. These ranges are dependent on
parameters of the fractured material, predominant length of existing cracks
and the way the load is applied.

Fig. 8.9. Finding optimal pulse amplitude.
Possible energy ε (J) values for

different pressure amplitudes P (Pa).
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8.10 Dependence of the load parameters minimizing the
energy for fracture on the length of the existing crack

Dependence of the optimal load parameters on the crack length was also
studied. The results received are represented in Fig. 8.10a and b. As follows
from Fig. 8.10a duration of the load, that minimizes energy and momentum
inputs is linearly or quasi-linearly dependent on the existing crack length.
With the disappearing crack length the duration of the load minimizing
momentum needed to increment the crack approaches zero. At the same
time the duration optimal for the energy input most probably tends to
the microstructural time of the fracture process τ . The maximum possible
time-to-fracture also tends to the microstructural time of fracture.

Fig. 8.10. (a) Dependence of optimal load duration (µs) on the crack length (mm), (b)
Dependence of optimal load amplitude (Pa) on the crack length (mm).
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Fig. 8.11. Dependence of optimal load amplitude (Pa) on the crack length (mm).

Thus, considering intact media as the extreme case of media with cracks
when the crack length goes to zero, we find that the maximum possible time-
to-fracture is the same as the microstructural time of the fracture process.
Durations of the loads being optimal for the energy inputs for the fracture
of intact media are also equal to the microstructural time of the fracture
process. Amplitudes of loads, that minimize energy and momentum suffi-
cient to increment the crack length, are presented in Fig. 8.10b.

As expected, the amplitude of the threshold pulse is inversely dependent
on

√
l, where l is the crack length. Dependence of amplitude, minimizing

energy inputs, from the crack length is close to 1√
l
. The amplitude, minimiz-

ing momentum, is back proportional to the crack length. When the crack
length is close to zero, the amplitude of the load, that minimizes the energy
cost of the crack propagation, is close to the threshold amplitude. However,
the amplitude, minimizing the energy input, deviates from the threshold
amplitude more and more with the growing crack length (Fig. 8.11).

8.11 Conclusions on energy input
optimisation in dynamic fracture

The results received stand for a possibility to optimize energy consumption
of different fracture connected industrial processes (e.g. drilling, grinding,
pounding, etc.). It is shown that the energy cost of crack propagation
strongly depends on the amplitude and frequency of the load applied. For
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example, in the studied problem when the frequency of the load differs from
the optimal one by 10%, energy cost of the crack initiation is exceeding the
minimal value by more than 10%.

The obtained dependencies of the optimal characteristics of a load pulse
on the existing crack length can help predicting optimae energy saving
parameters for fracture processes by means of investigating the predominant
crack size in a fractured material.

8.12 Energy input minimisation in detonation initiation

Possibility to minimise energy needed to initiate detonation in different
(gaseous, spray, solid) explosive media is of extreme importance in connec-
tion to a big number of applications. Among these we can mention pulse
detonation engines. For pulse detonation engines initiation of detonation
is one of the central design problems and in many cases energy requited to
detonate the fuel is exceeding practically attainable limits.

In chapter 12 incubation time criterion for detonation is presented and
analysed. It is shown how one can find optimal energy saving parameters
for electric discharges initiating detonation in gaseous media utilising the
incubation time approach in detonation. Having parameters of the deto-
nating media (incubation time of the detonation and critical energy input
rate) that can be evaluated experimentally, the problem of finding the op-
timal (minimising energy input) shape for pulse producing detonation is
reduced to simple calculations.
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Chapter 9

Kinetic approach in fracture∗

Kinetic approach in fracture. Autowave fracture
model. Crack as a wave of damage

9.1 Introduction

Classical quasistatic fracture criteria are usually represented in the terms of
instant values of the local stresses (or the stress intensity factor for the crack
problems) at the supposed fracture point. In contrast, dynamic fracture
modeling is principally based on a characteristic time of microfracture and
corresponding micro-relaxation (micro-redistribution) processes preceding
the macro-fracture event. In order to account the integral contribution of
such processes to the dynamic fracture phenomenon an incubation time
approach was proposed in Morozov et al. (1990) and developed in Petrov
(1991, 1996). Introducing a characteristic time of micro-relaxation pro-
cesses (the incubation time) as a structural material parameter together
with the static fracture toughness it is possible to state the criterion of
macroscopic fracture (e.g. see Petrov et al., 2003, and Pugno, 2006). But a
continual description of fracture evolution at the microscopic scale has not
been provided.

To describe the microfracture evolution (including processes of
nucleation, interaction and following coalescence of microfracture —
microcracks, microdamage, vacancies and so on) we have defined the func-
tion describing an instant local microfracture state (the damage function).
Then we have derived the law of damage function behavior based on the
transfer equation, the principles of damage mechanics and the incuba-

∗Authors acknowledge Dr. A.Kashtanov for his significant contribution to this chap-
ter.
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tion time approach. A detailed analysis has been conducted for the one-
dimensional problem. Finally the process of dynamic crack nucleation has
been simulated starting from experimental results.

In this chapter paper by A. Kashtanov, Y. Petrov et al. (Kashtanov et
al., 2008) is extensively used.

9.2 Diffusion description of dynamic fracture

Firstly let us derive the kinetic equation describing the microfracture pro-
cess as a particular case of the transfer equation. We fix an arbitrary
stationary domain Ω inside the considered solid and introduce the damage
function θ (r̄, t) ∈ [0, 1] to characterize the relative volume of microfrac-
ture (microdamage) in solid’s mass unit in the neighborhood of every point
r̄ ∈ Ω. Then θ = 0 corresponds to the intact material whereas θ = 1 to the
local state of macroscopic fracture. θΩ (t) =

∫

Ω ρ (r̄) θ (r̄, t) dr̄ describes
the evolution of local material density in Ω during the microfracture pro-
cess, where ρ is the local density of the initial intact material. We can
apply the transfer principle for θΩ: the change of θΩ inside of Ω is caused
by a flux of microfracture JθΩ through the boundary ∂Ω and by an internal
sources of microfracture ΣθΩ . That is

d

dt
θΩ (t) = −JθΩ + ΣθΩ . (9.1)

Let j̄θds̄ denote the elementary flux of θ through the area ds̄ having the
outer normal n̄; similarly σθdr̄ defines the rate of internal sources of θ in
the neighborhood of point dr̄ inside Ω. Then, according to the divergence
theorem, we obtain:

JθΩ =

∫

∂Ω

j̄θds̄ =

∫

Ω

∇ · j̄θdr̄ (9.2)

and

ΣθΩ =

∫

Ω

σθdr̄. (9.3)

Owing to the fact that the domain Ω is fixed in space we have:

d

dt
θΩ =

d

dt

∫

Ω

ρθdr̄ =

∫

Ω

∂

∂t
(ρθ) dr̄, (9.4)
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and due to arbitrary choice of Ω, (9.1) can be rewritten as:

∂

∂t
(ρθ) + ∇ · j̄θ = σθ. (9.5)

Supposing the flux of microfracture over the boundary ∂Ω to be totally
determined by diffusion-type processes of microfracture redistribution we
can use the Fick’s law j̄θ = −D (t) ∇ (ρθ). The function D (t) might
be termed relaxation factor. It has the physical meaning of the rate of
relaxation processes at the microscale.

Further we will not go beyond the one-dimensional case. Hence, if
neglecting the variation of density of an undamaged part of solid (9.5)
is reduced to:

∂θ

∂t
= D (t)

∂2θ

∂x2
+ f (θ, x, t) , (9.6)

where f (θ, x, t) = σθ/ρ. (9.6) describes the microfracture evolution in the
form of diffusion equation. This equation involves two functions, namely
the relaxation factor D and the microfracture source function f , expressions
of which with reference to the fracture process have to be clarified. Fol-
lowing this aim, we examine the one-dimensional process of microfracture
accumulation from the viewpoint of damage mechanics.

In the general form of damage equation

∂θ

∂t
= g (θ, x, t) + f (θ, x, t) (9.7)

the functional f (θ, x, t) describes the macroscopically uniform process of
microfracture accumulation whereas g (θ, x, t) describes a local stochastic
(fluctuating) processes around the point x, namely the local processes of
relaxation (redistribution) of microfracture. Let P (x, t) dx be the proba-
bility of defect “migration” from the point x within a distance dx at the
time t. Then we can write

g (θ, x, t) = ψ





+∞
∫

−∞

θ (ζ, t)P (ζ − x, t) dζ − θ (x, t)



 , (9.8)

where ψ is a constant characterizing the intensity of microfracture redistri-
bution. Since

∫ +∞
−∞ P (ζ, t) dζ = 1 then

∫ +∞
−∞ ζ P (ζ, t) dζ = 0 as an integral

of an odd function. Denoting R (t) =
√

∫ +∞
−∞ ζ2P (ζ, t) dζ and expanding
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the function θ into Taylor series up to the second order terms

θ (ζ, t) = θ (x, t)+
∂θ (x, t)

∂x
(ζ − x)+

1

2

∂2θ (x, t)

∂x2
(ζ − x)2 +o (ζ − x)2 (9.9)

we can rewrite (9.8) as g (θ, x, t) = ψ
2 R2 (t) ∂2θ(x,t)

∂x2 . Then, (9.7) can be
reduced to:

∂θ

∂t
=
ψR2 (t)

2

∂2θ

∂x2
+ f (θ, x, t) . (9.10)

This equation has the same form (9.6). Comparing them we can express
the relaxation factor as:

D (t) =
ψR2 (t)

2
(9.11)

and conclude that the source function f (θ, x, t) in (9.6) is the term describ-
ing the uniform process of microfracture accumulation at the macroscale.
We will obtain its exact expression based on the principle of mass conser-
vation.

9.3 Uniform process of microfracture accumulation

Let us choose a sufficiently small domain inside the considered solid to
be sure that its density is changing homogeneously with time. Its mass is
denoted as m, its volume before deformation is V0 whereas the total volume
of microfracture (microdefects) accumulated inside the chosen portion is
V∗. Thus, during the damage process its volume changes as V = V0 + V∗.
Change of volume is obviously accompanied by a variation of local density
ρ, described by the mass conservation:

1

ρ

dρ

dt
= −div v̄, (9.12)

where v̄ is a local velocity of material particles.
From the other side we can express the local density as ρ = dm

dV =
dm
dV0

dV0

dV = dm
dV0

(

1 − dV∗

dV

)

. Introducing the damage parameter θ = dV∗

dV and

setting ρ0 = dm
dV0

we obtain

ρ = ρ0 (1 − θ) . (9.13)
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Substituting (9.13) into (9.12) yields

dθ

dt
= (1 − θ) div v̄. (9.14)

(9.14) represents the mass conservation law in the form of a kinetic damage
equation. To approximate the divergence of local velocity belonging to the
right side of (9.14) let us expand it into a power series of θ:

div v̄ = C0 + Cθ + ō (θ) + ... . (9.15)

Omitting higher terms in (9.15) and noting absence of volume expansion
for the intact material (div v̄|θ=0 = 0), (9.14) becomes:

dθ

dt
= Cθ (1 − θ) . (9.16)

Here C = C (x, t) is an unknown function. In the particular case of
C = const, (9.16) represents the well-known simpliest logistic equation,
which is often used in damage mechanics to describe the process of damage
accumulation.

Recollecting the arguments mentioned above it is suggested:

f (θ, x, t) = C (x, t) θ (1 − θ) . (9.17)

The last to define is the exact form of microfracture source intensity C (x, t).
When C (x, t) = 0, only microfracture redistribution takes place and a
new microfracture is not provided. Besides that, it is natural to suppose
that fracture is intensified under the strain and, hence, the intensity of
microfracture source has to be determined by the velocity of change of
the stress field (or the stress intensity factor in the case of macrocrack
existence). Taking into account the incubation time phenomenon, according
to Kashtanov and Petrov (Kashtanov and Petrov, 2007), we can define the
intensity of microfracture source as

C (x, t) =
1

Fcτ
(F (t) − F (t − τ )) . (9.18)

Here F (t) is the local intensity of stress field and Fc represents its critical
value. In the crack problems F (t) coincides with the stress intensity factor
F (t) = KI (t) and Fc is the static fracture toughness. The structural
material parameter τ in (9.18) is the structural (incubation) time, which
has the meaning of a characteristic time of micro-relaxation processes and
could be measured experimentally (e.g. see Morozov and Petrov, 2000).
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9.4 Model validation

Let us consider a particular case of (9.6) assuming D = const and intro-

ducing the new dimensionless variables X = x
/√

τD and T = t/τ . Then,

(9.6) takes a dimensionless form:

∂θ

∂T
=

∂2θ

∂X2
+ Φ (θ, X, T ) , Φ (θ, X, T ) =

F (T ) − F (T − 1)

Fc
θ (1 − θ) .

(9.19)
In general this equation cannot be solved analytically. Nevertheless, in the
particular case when F (T ) increases at constant rate (9.19) becomes the
classical Kolmogorov-Petrovsky-Piskunov equation, see Kolmogorov et al.
(Kolmogorov et al., 1937)

∂θ

∂T
=

∂2θ

∂X2
+ Φ (θ) , Φ (θ) = α θ (1 − θ) , (9.20)

where α = F (T )−F (T−1)
Fc

= const > 0. It is well-know that this equation
admits the solutions in the form of a kink-type autowave. Indeed, (9.20)
is invariant with respect to translation by X and T . Therefore, imposing
the appropriate boundary conditions, we can obtain the solutions of this
equation which are not depending on the initial condition. It means that
after some period of time the solution “forgets” the initial condition and
goes in steady-state when the wave front remains the same with time and
the front profiles are self-similar (see also Carpinteri, 1994). Supposing that
the wave front moves with constant velocity λ from right to left and in the
autowave solution θ = θ (X − λT ), we can reduce (9.20) to an ordinary
differential equation:

ϕ

(

λ+
dϕ

dθ

)

= −α θ (1 − θ) , (9.21)

where ϕ (θ) = dθ
d(X−λT ) . The problem (9.21) is known from the theory of

laminar flame (e.g. see Zeldovich et al., 1985). In particular, it was proved
that under the boundary conditions ϕ (0) = 0 and ϕ (1) = 0 it has an
infinite set of solutions with the corresponding spectrum of wave velocities
λ ≥ 2

√
α. Moreover, θ = 0 and θ = 1 are the lower and the upper

asymptotes of its solutions. Accordingly, we have verified that, at least in
the case when F (T ) increases at a constant rate our equation can be used
to describe the propagation of fracture surface as a nonlinear microfracture
wave.
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It is easy to see that θ = 0 and θ = 1 also bound the solutions of (9.19).
Indeed, when θ (X0, T0) = 0 or θ (X0, T0) = 1 then Φ (θ, X0, T0) = 0 and
(9.19) becomes purely diffusive θT (X0, T0) = θXX (X0, T0).

For further investigation of (9.19) the finite-difference scheme of forth
order of approximation is designed (see Appendix 1). Having the numerical
solution of (9.19), we can define the dimensionless front velocity V (T ) of the
microfracture wave. Then returning to the dimension variables we obtain:

v (t) =
dx

dt
= V (T )

√

D

τ
, (9.22)

where v (t) is the experimentally measured velocity of macrocrack. Accord-
ingly, the value of the relaxation factor is

D = τ

(

v (t)

V (T )

)2

. (9.23)

(9.23) completes the model for the particular case of the constant rate of
microfracture relaxation during fracture process.

Let us note that (9.22) gives an important qualitative result: the dy-
namic crack speed decreases by increase of the square root of incubation
time as v ∼ τ−1/2. This result could be useful to design the materials which
are able to resist effectively against dynamic fracture.

9.5 Numerical example

We will simulate the process of nucleation rather than propagation of a
crack because in this case the microfracture source function Φ (θ, X, T ) is
having a very simple form. The problem of macrocrack propagation can be
investigated using the same procedure but with another, more complicated
source function.

Let us consider the problem of an elastic plane with initial semi-infinite
rectilinear crack x ∈ (−∞, 0]. The crack faces are subjected to symmet-
ric shock loading p (t) = PtH (t), where P = const is the loading rate

and H (ς) =

{

0, ς < 0
1, ς ≥ 0

is the Heaviside step function. In this problem

the stress intensity factor is defined as KI (t) = 2/3 Pϕ (c1, c2) t3/2H (t)
(Petrov and Sitnikova, 2004), where c1 and c2 are the velocities of the

longitudinal and transverse waves and ϕ (c1, c2) = 4 c2

c1

√

c2
1−c2

2

π c1
. Then, in
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compliance to (9.19) we can write the microfracture source function as:

Φ (θ, X, T ) =

=
2

3

P

KI c
ϕ (c1, c2) τ

3/2θ (1 − θ)
(

T 3/2H (T )− (T − 1)3/2 H (T − 1)
)

.

(9.24)

In compliance to the analysis conducted in Kashtanov and Petrov (Kash-
tanov and Petrov, 2007), we can define time t∗ as the time from the moment
of loading application to the moment of macrocrack initiation from

P =
15 τ K1c

4ϕ

(

t5/2∗ − (t∗ − τ)5/2
)−1

. (9.25)

Therefore,

Φ (θ, X, T ) =
5

2

T 3/2H (T ) − (T − 1)3/2 H (T − 1)

T 5/2
∗ − (T∗ − 1)5/2

θ (1 − θ) , (9.26)

where T∗ = t∗/τ is the dimensionless time-to-crack initiation.
The right side of (9.26) does not depend on x. Much more impor-

tant is that Φ (θ, X, T ), as well as the corresponding solution of (9.19), is
fully determined by a single parameter — time-to-crack initiation. That
is, for every value T∗ we have the same dimensionless solutions θ (X, T ),
not depending on the material properties. It makes the problem of crack
nucleation much simpler than the problem of the subsequent propagation.
The difference in the material properties is accounted by the inverse trans-
formation to dimensional variables through the values of τ and D.

We simulate the process of dynamic crack nucleation at the extension of
initial crack, namely inside the interval [0, XN ] sufficiently wide to neglect
the effect of a right boundary. The initial and boundary conditions are
stated in the form

θ (X, 0) = 1 − H (X) , θ (0, T ) = 1, θ (XN , T ) = 0. (9.27)

Let us consider the experimental data from Ravi-Chandar and Knauss
(Ravi-Chandar and Knauss, 1984a, 1984b) obtained on Homalite-100
(KIc = 0.48 MPam1/2 and τ = 8 µs). In Fig. 9.1 the experimental results
related to the time-to-crack initiation t∗ (squares) as well as the initial ve-
locity of macrocrack v (circles) are plotted versus four different “reduced”
loading rates Pϕ.
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Fig. 9.1. The experimental values of the initial crack velocity v and the corresponding
time to crack start t∗ for different “reduced” loading rates Pϕ.

Fig. 9.2 displays the microfracture accumulation in the process of the
crack nucleation for the experimental value T∗ = 4.616 (t∗ = 37 µs) in
different points close to the tip of the initial crack. Apparently, the dynamic
macrocrack is nucleated up to the time T∗.

Fig. 9.2. The dependence of the damage function θ on time during the crack nucleation
process in different points at the given distances from the initial crack.

The dynamic evolution of damage wave front for the experimental value
T∗ = 4.616 (t∗ = 37 µs) is presented in Fig. 9.3. The initial crack is continu-
ously diffusing and the fracture process zone (pre-crack zone) corresponding
to 0 < θ < 1 is being formed.

Fig. 9.4 shows the computed dimensionless velocities V of the microfrac-
ture wave front (circles) and the values of relaxation factor D (squares),
defined in compliance with (9.23) for different experimental values of the
time-to-crack initiation.



178 Dynamic Strength of Continuum

Fig. 9.3. The dependence of the damage function θ on the distances from the initial
crack during the macrocrack nucleation process.

Fig. 9.4. The dependences of relaxation factor D and dimensionless crack velocity V on
the time to crack start t∗.

In conclusion, let us make a reference to how one can take the de-
pendence of relaxation factor on the stress state and, hence, on time into
account. It is required to simulate dynamic fracture, for example, under
a pulsating load. Supposing D = D (t) and changing to dimensionless
variables in (9.6) we will not succeed in excluding D (t) from the final
equation. Thus, we are obliged to construct a finite-difference scheme with
a varied time step and to determine the dependence of relaxation factor
on time before starting the simulation. For example, we can determine
this dependence having an experimental data describing the morphology of
fractured surface or the fracture process zone. Indeed, the relaxation factor
determines the characteristic redistribution area of microfracture whereas
the incubation time has the physical meaning of the characteristic time
of microfracture redistribution processes. Then, the magnitude

√

D (t) τ
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determines the characteristic linear size of the fracture process zone accom-
panying the crack propagation.

9.6 Conclusion

The equation of dynamic fracture evolution as a process of nucleation and
subsequent coalesce of microfracture has been derived. Relations between
the model parameters and the macroscopic physical characteristics of frac-
ture process (the static fracture toughness and the incubation time) have
been defined from the principles of damage mechanics and incubation time
approach. Obtained equation describes the propagation of macrocrack as
a nonlinear microfracture wave. It was shown that in the case of uniformly
increasing stress field (or stress intensity factor) the model can be reduced
to the well-known Kolmogorov-Petrovsky-Piskunov equation.

The numerical finite-difference scheme of the forth order of approxi-
mation was developed. The stability and convergence of this scheme was
proved. For the one-dimensional case, corresponding to the propagation
of macrocrack under the assumption of “independent” microfracture re-
laxation, the equation has been numerically solved. A process of dynamic
macrocrack nucleation was simulated using experimental data related to the
time-to-crack initiation and the initial crack velocity. The model describes
also the crack propagation following the nucleation stage.

Appendix. The finite-difference scheme

The equation to be solved is:

∂θ (X, T )

∂T
=
∂2θ (X, T )

∂X2
+ Φ (θ, X, T ) (9.28)

with the initial and boundary conditions given by:

θ (X, 0) = Ψ (X) , A0
∂θ (0, T )

∂X
+ B0θ (0, T ) = C0 (T ) ,

AN
∂θ (XN , T )

∂X
+ BNθ (XN , T ) = CN (T ) .

(9.29)

The approximate solution θ ∈ [0, ∞) is built inside the domain (X, T ) ∈
[0, XN ]× [0, TM ], in the vertexes of rectangles of the dimension h× s, that
creates a grid sized 0..N × 0..M .
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Let us rewrite (9.28) in the following form:

Λθ = Φ (θ, X, T ) , (9.30)

where Λθ = θT − θXX , and fix the relation between the grid dimensions
according to

k = s
/

h2 = const. (9.31)

We would like to construct the six-nodes implicit finite-difference scheme
to approximate the solution of (9.30) with accuracy O

(

s2 + h4
)

= O
(

h4
)

.
That is, in every point of the grid we have to find the approximation poly-
nomial having the form:

Λhθ
i,j = a1θ

i−1,j + a2θ
i,j + a3θ

i+1,j + a4θ
i−1,j+1 + a5θ

i,j+1 + a6θ
i+1,j+1,

(9.32)
where a1,. . . ,a6 are the constant coefficients identical throughout the grid
and θi,j = θ (ih, js) is the value of the required solution in the corresponding
grid point (see Fig. 9.5).

Fig. 9.5. The parabolic equation stencil.

Thus the finite-difference equation corresponding to (9.30) can be writ-
ten as:

Λhθ
i,j = Φ

(

θi,j , ih, js
)

+O
(

h4
)

, i = 0, 1, ..., N, j = 0, 1, ..., M. (9.33)

To construct an approximated solution θi,j we have to match the coefficients
a1,. . . ,a6 to provide the desired accuracy. For simplicity let us impose the
following conditions: a1 = a3 and a4 = a6. Then, using the expansion into
Taylor series we can obtain the expression forΛhθ i,j in any fixed grid point
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(i, j):

Λhθ
i,j = (2a1 + a2 + 2a4 + a5) θ

i,j +

+ h2 (a1 + a4) θ
i,j
XX +

h4

12
(a1 + a4) θ

i,j
XXXX+

+ kh2 (2a4 + a5) θ
i,j
T +

k2h4

2
(2a4 + a5) θ

i,j
TT + kh4a4θ

i,j
XXT +

+O
(

a1h
6, a4h

6, (a4 + a5) k3h6, a4k
2h6, a4kh6

)

. (9.34)

Due to θT = Λθ + θXX we have:

θXXT = θTXX = ΛθXX + θXXXX

and

θTT = (Λθ + θXX)T = ΛθT + ΛθXX + θXXXX

and (9.34) becomes:

Λhθ
i,j = (2a1 + a2 + 2a4 + a5) θ

i,j + h2 (a1 + a4+

+ k (2a4 + a5)) θ
i,j
XX +

h4

2

(

a1 + a4

6
+ 2ka4 + k2 (2a4 + a5)

)

θ i,j
XXXX+

+ kh2 (2a4 + a5)Λθ i,j +
k2h4

2
(2a4 + a5)Λθ i,j

T +

+ kh4

(

a4 +
k

2
(2a4 + a5)+

)

Λθ i,j
XX+

+ O
(

a1h
6, a4h

6, (a4 + a5) k3h6, a4k
2h6, a4kh6

)

. (9.35)

Therefore, to obtain the required accuracy we have to demand (e.g. see
Godunov and Ryaben’kii, 1987)















2a1 + a2 + 2a4 + a5 = 0

a1 + a4 + k (2a4 + a5) = 0
a1+a4

6 + 2ka4 + k2 (2a4 + a5) = 0

. (9.36)

Using the option to specify the closure condition to combined equations
(9.36) we impose:

kh2 (2a4 + a5) = 1. (9.37)
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By solving the system of algebraic equations (9.36)–(9.37) we obtain:

a1 = a3 = −
1

2h2

(

1 +
1

6k

)

, a2 =
1

h2

(

1 +
1

6k
−

1

k

)

,

a4 = a6 = −
1

2h2

(

1 −
1

6k

)

, a5 =
1

h2

(

1 −
1

6k
+

1

k

)

.

(9.38)

Substituting (9.38) into (9.35) and using (9.30) yields:

Λhθ
i,j = Φ i,j +

kh2

2

(

Φ i,j
T +

1

6k
Φ i,j

XX

)

+O
(

h4
)

, Φ i,j = Φ
(

θ i,j , ih, js
)

.

(9.39)
Expanding the derivatives of Φ i,j into Taylor series we finally obtain:

Λhθ
i,j = Φ i,j

0 + O
(

h4
)

, (9.40)

where Φ i,j
0 = 4

3Φ i,j + 1
12

(

Φ i+1,j + Φ i−1,j − 6Φ i,j−1
)

. Thus, (9.28) be-
comes:

a4θ
i−1,j+1 + a5θ

i,j+1 + a6θ
i+1,j+1 = −a1θ

i−1,j − a2θ
i,j − a3θ

i+1,j + Φ i,j
0 .

(9.41)
It is easy to see that the constructed scheme is a refined modification of the
Crank-Nicholson scheme (e.g. see Godunov and Ryaben’kii, 1987):

θ i,j+1 − θ i,j

s
= µ

θ i−1,j+1 − 2θ i,j+1 + θ i+1,j+1

h2
+

+ (1 − µ)
θ i−1,j − 2θ i,j + θ i+1,j

h2
,

where µ = 1
2

(

1 − 1
6k

)

.
Finalizing the implicit difference formula the initial and boundary con-

ditions (9.29) can be rewritten, using the expansion into Taylor series, as

θ i,0 = Ψ (ih) ,

−
A0

2h
θ 2,j +

4A0

2h
θ 1,j +

(

B0 −
3A0

2h

)

θ 0,j = C0 (js) ,

AN

2h
θN−2,j −

4AN

2h
θN−1,j +

(

BN +
3AN

2h

)

θN,j = CN (js) .

(9.42)

Finally, (9.41) and (9.42) (for every value of j > 1) can be combined in the
following matrix form:

AΘ
j+1

= −BΘ
j

+ Y
j

, (9.43)
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where

A =





















B0 − 3A0

2h
4A0

2h −A0

2h 0 . . . 0
a4 a5 a6 0 . . . 0
0 a4 a5 a6 . . . 0
...

...
...

...
...

...
0 . . . 0 a4 a5 a6

0 . . . 0 AN
2h − 4AN

2h BN − 3AN
2h





















(N+1)×(N+1)

,

(9.44)

B =





















0 0 0 0 . . . 0
a1 a2 a3 0 . . . 0
0 a1 a2 a3 . . . 0
...

...
...

...
...

...
0 . . . 0 a1 a2 a3

0 . . . 0 0 0 0





















(N+1)×(N+1)

,

Θ j =





















θ 0,j

θ 1,j

θ2,j

...
θN−1,j

θN,j





















N+1

, Y j =





















C0 (js)

Φ 1,j
0

Φ 2,j
0

...

ΦN−1,j
0

CN (js)





















N+1

.

(9.45)

The solution for j = 0 is given by the initial condition (9.42) but for j = 1
it has to be defined from different considerations. The reason of picking out
the case of j = 1 is obvious. The relation (9.40) shows that the value Φ i,0

0

depends on Φ i,−1, which is undetermined. Nevertheless we can define the
value of θ i,1 directly from the initial condition (9.42), which can be written
as θ i,0

XX = Ψ i
XX . Using a Taylor expansion we have θ i,1 = θ i,0 + sθ i,0

T +
O
(

s2
)

, and from (9.30) θ i,0
T = Λθ i,0 + θ i,0

XX and Λθ i,0 = Φ i,0. Therefore,
the approximate solution for j = 1 can be expressed as

θ i,1 = Ψ i + kh2
(

Φ i,0 + Ψ i
XX

)

+ O
(

h4
)

, i = 0, 1, ..., N (9.46)

Thus we have constructed the implicit numerical scheme of the forth order
of approximation to solve nonlinear parabolic equation (9.28–9.29). Further
considerations are concerned to a particular case of our interest correspond-
ing to the process of fracture, characterized by θ (x, t) ∈ [0, 1].
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Now let us prove the stability of the constructed approximation scheme
and the convergence of numerical solution to the exact one. We will carry
out the proof for the case 1/6 ≤ k ≤ 5/6. This is sufficient for our applica-
tions and in this case the proof is extremely simple. Firstly let the problem
described by (9.28) and (9.29) be rewriten in the following form

Λhθ
i,j = Φ i,j

0

θ i,0 = Ψ i
, (9.47)

where Λhθ i,j are defined by (9.32) and (9.38), Φ i,j
0 is determined by (9.40)

and Ψ i = Ψ (ih). It is easy to show that if the inequality

max
j

sup
i

∣

∣θ i,j
∣

∣ ≤ C

(

sup
i,j

∣

∣

∣
Φ i,j

0

∣

∣

∣
+ sup

i

∣

∣Ψ i
∣

∣

)

(9.48)

is valid then the numerical scheme is stable (e.g. see Godunov and
Ryaben’kii, 1987). Here C is a positive constant. For the considered case
1/6 ≤ k ≤ 5/6 the coefficients are limited by

a1, a3 ∈
[

−
1

h2
,−

3

5h2

]

, a2 ∈
[

−
4

h2
, 0

]

,

a4, a6 ∈
[

−
2

5h2
, 0

]

, a5 ∈
[

2

h2
,

6

h2

]

.

(9.49)

The codomain of the approximated solution is the interval [0, 1], and
using (9.32) we obtain the estimation

∣

∣Λhθ i,j
∣

∣ ≥
∣

∣a2θ i,j + a5θ i,j+1
∣

∣ =
− |a2|

∣

∣θ i,j
∣

∣ + |a5|
∣

∣θ i,j+1
∣

∣. According to (9.47) and after simple manip-
ulations we have

sup
i

∣

∣θ i,j+1
∣

∣ ≤ 2 sup
i

∣

∣θ i,j
∣

∣+ C1 sup
i,j

∣

∣

∣
Φ i,j

0

∣

∣

∣
, C1 = h2

0

(

1 −
1

6k
+

1

k

)−1

.

(9.50)
In the same manner we can write the inequalities

sup
i

∣

∣θ i,j
∣

∣ ≤ 2 sup
i

∣

∣θ i,j−1
∣

∣+ C1 sup
i,j

∣

∣

∣
Φ i,j

0

∣

∣

∣
,

· · ·
sup

i

∣

∣θ i,1
∣

∣ ≤ 2 sup
i

∣

∣θ i,0
∣

∣+ C1 sup
i,j

∣

∣

∣
Φ i,j

0

∣

∣

∣
.

After composition of all the inequalities, including the initial condition and
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the fact that j ≤ M , we finally estimates:

sup
i

∣

∣θ i,j+1
∣

∣ ≤ 2M (1 + C1)

(

sup
i,j

∣

∣

∣
Φ i,j

0

∣

∣

∣
+ sup

i

∣

∣Ψ i
∣

∣

)

, i = 0, 1, ..., N.

(9.51)
This means that inequality (9.48) is valid for every C ≥ 2M (1 + C1) and,
hence, the numerical scheme (9.47) is absolutely stable in the considered
particular case 1/6 ≤ k ≤ 5/6. Thus, according to Philippov’s theorem
(e.g. see Godunov and Ryaben’kii, 1987) the numerical solution converges
to the exact solution of problem the (9.28) and the order of its convergence
coincides with the order of scheme approximation.
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Chapter 10

Incubation time criterion for
dynamic yielding∗

Dynamic yielding of metals. Application of the incu-
bation time approach to predict rate dependency of
yielding. Ductile-to-brittle transition at dynamic frac-
ture. Anomalous yielding under high rate loading

10.1 The Incubation Time and Criteria of
Fracture and Yielding

An efficient criterion for the analysis of brittle fracture for defect-free ma-
terial was formulated in Chapter 4:

∫ t

t−τ
σ(s)ds < σSτ, (10.1)

where τ is the incubation time, σS is ultimate stress for quasi-static load-
ing and σ(t) is the local stress. The moment of fracture t∗ corresponds to
equality in (10.1) or, in the general case, non-compliance with this condi-
tion. Criterion (10.1) has shown a good correspondence with experimental
results for many materials in wide range of loading rates.

A similar approach can be used to predict dynamic yielding. Various
applications (e.g. practical engineering problems, analysis of experimental
data obtained by different techniques) require a simple and usable yield
criterion applicable for arbitrary loading history. For mild steel such a cri-
terion was proposed by J. D. Campbell (Campbell, 1953). According to the
dislocation theory of Cotrell—Bilby (Cotrell, Bilby, 1949), time necessary
to nucleate a dislocation is proportional to

exp

(

U(σ/σ0)

kT

)

, (10.2)

∗Authors acknowledge Dr. A.Gruzdkov and Ms. Sitnikova for their significant
contribution to this chapter.
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where T is the absolute temperature, σ0 is the yield limit at T=0K (ob-
tained by extrapolation), k is the Boltzman constant, U is the activation
energy and σ is the local stress. Assuming that yielding occurs when the
dislocation density reaches a critical value, J. D. Campbell received yielding
criterion in the following form:

t∗
∫

0

exp

(

−
U(σ(t)/σ0)

kT

)

dt = Const.

T. Yokobory proposed (Yokobory, 1952) the following approximation
for the activation energy:

U(σ/σ0) = −
1

n
ln

σ

σ0
,

where n is a constant. Thus, Campbell’s criterion can be rewritten:

t∗
∫

0

(σ(t))αdt = Const, (10.3)

where α = (nkT )−1. It is evident that this criterion contradicts the quasi-
static approach:

σ(t) ≤ σY , (10.4)

where σY is the static yield limit. Here we can conclude that Campbell’s cri-
terion is valid for very short loading pulses. Although in his later works (e.g.
Campbell, 1953) Campbell claims that the dislocation theory of Cotrell—
Bilby can perform unsatisfactory for mild steel, (10.3) may be considered
as a good phenomenological dynamic yield criterion for various materials.

Nevertheless in many problems (for example, studying brittle-to-ductile
fracture transition or temperature dependencies that will be discussed be-
low) it is very important to have a criterion applicable for arbitrary load
duration and amplitude. Obviously, Campbell’s criterion is not an issue.
In (Gruzdkov, Petrov, 1991, Gruzdkov, Petrov, 1999) a new yield criterion
was proposed:

1

τY

t
∫

t−τY

(

σ(s)

σY

)α

ds < 1, (10.5)
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where τY is the incubation time of yielding process, σY is the static yield
limit, α is the dimensionless shape parameter (usually α > 1). It is easy
to show that if stresses change “slowly” (as comparing to τY ) then the
criterion given by (10.5) is in a close agreement with the static criterion
of critical stress (10.4). In case of loads with durations comparable or less
than the incubation time τY the criterion (10.5) is evidently similar to the
criterion of Campbell (10.3).

Some advantages of criteria given by (10.1) and (10.5) should be men-
tioned. They are applicable for arbitrary stress-time dependencies. For
example criterion for yielding given by (10.5) can explain both the growth
of the yield limit in tests with constant strain rate (e.g. Campbell, Fergu-
son, 1970, Meyers, 1994) and “yield delay” in experiments with constant
stress applied to a sample (e.g. Kraft, Sullivan, 1959). These criteria are
valid for arbitrary load duration. It should be also mentioned that behav-
ior of material is described using a limited set of constants that can be
determined experimentally.

10.2 Determination of Dynamic Yield Limit and
Dynamic Strength for Some Class of Experiments

Consider uniaxial tension or compression of a bar.

10.2.1 Constant Strain-Rate

In this case

σ(t) = Eε̇ tH(t), (10.6)

where H(t) is the Heaviside step function, E is the Young’s modulus, ε̇ is
the strain rate (supposed to be a constant). Substituting (10.6) into (10.5)
one receives:

(

t(Y )
∗

τY

)α+1

−

(

t(Y )
∗

τY
− 1

)α+1

H

(

t(Y )
∗

τY
− 1

)

=
(α+ 1)σαY
(τY Eε̇)α

, (10.7)

where t∗ is time-to-yielding. The yield stress is given by:

σ∗ = σ(t∗).
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Auxiliary variables are introduced:

y =
σ∗
σY

and x =
E τ ε̇

σY
.

As follows from (10.7), for “rapid” (i.e. y ≤ x) loading

y = (x · (1 + α))1/(α+1) , for x ≥ (·1 + α)1/(α+1) .

For “slow” (i.e. y > x) loading y can be easily found by iterations using:

yα+1 − (y − x)α+1 = x · (1 + α) , for x < (·1 + α)1/(α+1) .

For α = 1 (see (10.1)) the solution can be obtained explicitly:

σ∗ =

{

2σS ·
√

ε̇/ε̇S , ε̇ ≥ ε̇S

σS (1 + ε̇/ε̇S) ε̇ < ε̇S
,

where ε̇S = 2σS
Eτ . From (10.7) one can also determine time-to-yielding or

time-to-fracture (t∗). For α = 1 solution for t∗(ε̇) can be received in an
explicit form:

t∗ =

{

τ ·
√

ε̇S/ε̇, ε̇ ≥ ε̇S
τ
2 (1 + ε̇S/ε̇) ε̇ < ε̇S

(10.8)

In case of α 5= 1 (10.7) can be easily solved by iterations.

10.2.2 Constant Stress

In some experimental schemes (e.g. Kraft, Sullivan, 1959) the applied stress
is maintained at a constant level throughout the experiment. Despite the
fact that the value of the stress applied (σ∗) is significantly exceeding the
static yield limit, yielding occurs not immediately but after some measur-
able period of time, (“yield delay”). In order to find this time using the
incubation time approach one can substitute (10.5) with σ(t) = σ∗ · H(t).
For σ∗ < σY according to (10.5) yielding is not possible. For σ∗ ≥ σY one
can obtain:

t∗ = τY ·
(

σ∗
σY

)α

(10.9)

(10.9) can be rewritten as

log t∗ − α log σ∗ = C
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Fig. 10.1. Yield delay as a function of stress applied (mild steel, C0.22, Mn0.36).
Experimental points are taken from Kraft and Sullivan (Kraft, Sullivan, 1959).

According to this the shape parameter α is the slope of the line in the
logarithmic scale. Comparison of (10.9) to experimental data reported by
Kraft and Sullivan (Kraft, Sullivan, 1959) and reprinted in Fig. 10.1 shows a
good coincidence. It can also be noticed that α is decreasing with increasing
temperature.

10.2.3 Impact Loading

In case of a pressure pulse with duration D and amplitude A the stress-time
dependence can be approximated by:

σ(t) =

{

A sin
(

π t
D

)

, 0 < t < D
0, otherwise

(10.10)

The problem is to determine the threshold value of amplitude A (i.e.
the smallest possible value of the pulse amplitude that will lead to yielding
(fracture), for given D. For the threshold pulse the following equality is
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satisfied:

max
t







1

τY
·

t
∫

t−τY

(

σ(s)

σY

)α

ds







= 1 (10.11)

For “short” pulses (D ≤ τY ) it is evident that t∗ = D and substitut-
ing (10.10) into (10.11) one can get:

Aα

τY σαY
·

D
∫

0

(

sin
(π · s

D

))α
ds = 1

Substituting X = π s
D one obtains:

Aα 2D

πτY
·
π/2
∫

0

(sin X)α dX = σαY

Parameters µ and Iα are defined by:

µ =
2D

πτY
and Iα =

π/2
∫

0

(sin X)α dX =

√
π

2

Γ
(

α+1
2

)

Γ
(

α
2 + 1

) ,

where Γ(x) is the Euler’s gamma function. Then the amplitude is found to
be:

A = σY ·
(

µ

Iα

)1/α

.

For “long” pulses (D > τY ) in (10.11) one should use t∗ = (D + τ ) /2.
Using a substitution Z = π (1/2 − t/D) one can obtain:

A = σY ·





1

µ

µ
∫

0

(cos Z)αdZ





−1/α

.

One can find the fracturing amplitude from (10.1), supposing α = 1:

A =

{

σS · µ, µ ≥ π
2

σS ·µ
sin µ , µ < π

2

.

For very long pulses (D / τ) µ . 1 and hence A ≈ σS . In this
situation the criterion of critical stress (10.4) is valid.
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10.3 Temperature Dependence

Loading rate is not the only parameter that influences yielding. Another
important parameter is the temperature of the sample tested. The material
parameters (σY ,τY ,α) are known to be strongly dependent on temperature.
Analyzing available experimental data for different materials some approx-
imations of these dependencies can be proposed.

The static limit of yielding decreases along with the temperature growth.
The following approximation is used to predict temperature dependence of
σY :

σy = σ0 · exp

(

−
T

TP

)

, (10.12)

where TP is a constant. The dependency given by (10.12) is frequently used
for analysis of low-temperature plasticity. Although it can be derived on
the basis of (10.2), we treat it as phenomenological.

Incubation time exponentially grows with decreasing temperature. The
dependency is the following:

τY = τ0 exp

(

U

kT

)

, (10.13)

where U and τ0 are constants. (10.13) is directly following from (10.2),
assuming that the incubation time is an average time required to nucleate
a dislocation. At the same time another explanation is also possible. The
value of τY characterizes the rate of a certain process affecting the material
structure. Since the transition to the plastic state is connected to the
development of some dislocation structure, it is reasonable to assume that
this value is related to the temporal characteristic of dislocation motion.
Hence the incubation time is expected to be inversely proportional to the
velocity of dislocations (vD):

τY =
const

vD
.

The relation proposed by Gilman (see Kraft, Sullivan, 1959):

v = v0 exp

(

−
U

kT

)

,

can act as a theoretical background for (10.13).
The dimensionless shape parameter α decreases with increasing tem-

perature. The analysis of numerous experimental data had shown that the
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relation proposed by J. D. Campbell (equation (10.3)):

α =
const

T

is not valid for many materials. In some cases it can be used only for
relatively high temperature, for some materials parameter α is slightly de-
pending on temperature. Here a more general formula for shape parameter
α is proposed:

α = α0

(

1 − exp

(

−
W

kT

))

, (10.14)

where α0 and W are constants.

Fig. 10.2. Yield limit of molybdenum as a function of strain rate for various
temperatures. Experimental points from Campbell (Campbell, 1973). Theoretical

curves obtained using (10.5,10.12–10.14)) with parameters from Table 10.1.

Criterion given by (10.5) with additional relations given by (10.12–
10.14) was applied to analyze available experimental data for various ma-
terials. The comparison of experimental (Campbell, 1973) and theoret-
ical strain-rate dependencies of yield limit for molybdenum is presented
in Fig. 10.2. Analogous comparison for niobium (Campbell, 1973) is pre-
sented in Fig. 10.3. Previously published results for mild steel (Gruzdkov,
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Fig. 10.3. Yield limit of niobium as a function of strain rate for various temperatures.
Experimental points from from Campbell (Campbell, 1973). Theoretical curves

obtained using (10.5, 10.12–10.14)) with parameters from Table 10.1.

Petrov, 1999) were revised. Fig. 10.4 compares experimental (Campbell,
Ferguson, 1970) and theoretically predicted, using the incubation time ap-
proach, strain-rate dependencies of yield limits of mild steel. Here the
parameters used in criterion (10.5) (α, τ , σY ) are not chosen separately for
each temperature as in (Gruzdkov, Petrov, 1999) but according to (10.12–
10.14). Experimental data for titanium alloy from (Krüger, Meyer, 2003)
and theoretically predicted dependencies are compared in Fig. 10.5. Values
of parameters appearing in (10.12–10.14) for all the materials discussed,
are given in Table 10.1 (with E being the Young’s modulus).

Proceeding to fracture properties there are numerous results confirming
that σS is not so temperature sensitive (e.g. Kanel, Razorenov, 2001).
Influence of temperature on the incubation time of fracture was discussed
in (Morozov et al., 2002). In the same paper the following relation was
proposed:

τ = τ0
G

kT
, (10.15)

where τ0 = 10−13 s is the period of thermal oscillations of atoms in solids, G
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Fig. 10.4. Yield stress of mild steel as a function of strain rate for various
temperatures. Experimental points from Campbell and Ferguson (Campbell, Ferguson,

1970). Theoretical curves obtained using (10.5, 10.12–10.14)) with parameters from
Table 10.1.

is the portion of energy required to fracture an elementary structural cell of
the modeled material. (10.15) gives a possibility to explain the temperature
anomaly of strength and melting behavior of aluminum observed in (Kanel,
Razorenov, 2001).

10.4 Application to prediction of
Brittle-to-Ductile Transition

10.4.1 The Phenomenological Aspect

The idea to distinguish brittle and ductile fracture modes has a long history.
Despite that, different approaches to fracture classification exist. Moreover,
numerous experimental results demonstrate that the above-mentioned clas-
sification is rather conventional. Distinction between these two modes of
fracture is usually implying the amount of mechanical energy dissipated
before fracture occurs. Ductile fracture consumes much more energy as
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Fig. 10.5. Conventional yield limit of titanium alloy Ti-6-22-22S as a function of strain
rate for various temperatures. Experimental points from Krüger and Meyer (Krüger,
Meyer, 2003). Theoretical curves obtained using (10.5, 10.12–10.14)) with parameters

from Table 10.1.

comparing to the brittle one. However sometimes there is no explicit dis-
tinction between these two cases and mixed failure mode is taking place.

In case of dynamic loading determination of the amount of energy dissi-
pated during fracture process can be complicated. Thus, other characteris-
tics of fracture are normally used to distinguish between different fracture
modes. Some of them can be mentioned: the orientation of fracture sur-
face, the size of a plastic zone, the value of a limit strain (i.e. strain at the
moment of fracture), micro mechanisms of the fracture process etc.

It is well-known that realization of one or another fracture mode depends
on both the loading conditions and the material properties. Two different
materials may exhibit different fracture modes at similar loading conditions.
At the same time the same material can pronouncedly change its behavior
if temperature or strain-rate is changed. Therefore it is not correct to call
a given material “brittle” or “ductile”.

Here brittle-to-ductile transition is defined as a phenomenon of sudden
change in macroscopic fracture characteristics (ductility, strength, size of
a plastic zone, fracture toughness, energy dissipated for fracture process
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Material Experimental
Data

σ0 TP Eτ0
U
k α0

W
k

GPa K Pa s K K

molybdenum Campbell, 1973 1.04 2632 6.254 · 106 3534 19150 0.262

niobium Campbell, 1973 1.22 123.6 4.79 · 1011 26.6 12.51 6994

mild steel Campbell,
Ferguson, 1970

0.127 1862 110 4000 16.75 328.7

Ti-6-22-22S Krüger et al.,
2003

1.757 585 2.762 · 109 1191 75.6 303

Table 10.1: Material properties for materials discussed

etc.) as a result of small changes in loading parameters. These changes
in macroscopic fracture characteristics are usually accompanied by a no-
ticeable change of the fracture surface. Brittle-to-ductile transition was
observed experimentally for several metals (steels, molybdenum) and al-
loys (bimetals TiAl, NiAl).

Fracture is influenced by different parameters of the loading process
and hence the transition between fracture modes (ductile to brittle and
vice versa) may occur due to variation of several parameters: strain-rate,
temperature, grain size, size of a specimen etc. Brittle fracture is normally
taking place at low temperatures and high strain-rates while ductile frac-
ture can be expected at high temperature and slow loading rates. Many
experimental works were aimed on determination of the transition tem-
perature or the critical strain-rate. These investigations are of a practical
interest for engineering purposes because the transition temperatures for
some sorts of steel are in the range of typical winter season temperatures
in some regions of Earth (Siberia, Arctic areas etc.).

10.4.2 Modeling the Brittle-to-Ductile Transition

Brittle-to-ductile transition is usually interpreted as the result of competi-
tion between two mechanisms of deformation and fracture. The approach
presented here is similar to the one developed by A. Yoffe (1929), J. Fridman
(1974) and some others. The idea is to consider resistance to cleavage and
plastic shear separately. Following this ideology one can obtain dependen-
cies of critical stress on temperature (or on strain-rate) for both cases. The
transition temperature (strain-rate) corresponds to the intersection point
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of these diagrams. What fracture mode will occur depends on what critical
value of stress (cleavage or plasticity) is less for given conditions.

This approach can be modified. As the first approximation a model
neglecting interaction between these two processes is considered. Using cri-
teria of brittle fracture (10.1) and plastic yielding (10.5) the time necessary
for each of the processes to initiate (“fracture delay” and “yield delay”) can
be estimated. Hence one is able to predict which of them (cleavage or plas-
tic yielding) should happen earlier. If time to fracture (i.e. t∗ determined
from (10.1)) is less than time to yielding (value t(Y )

∗ from (10.5) then the
brittle mode of fracture will occur and vice versa.

Consider a bar tensioned at a constant rate ε̇. From (10.8) one can
obtain t∗(ε̇) for cleavage and solving (10.7) t(Y )

∗ (ε̇) for yielding can be found.
The condition for brittle fracture is :

t∗(ε̇)

t(Y )
∗ (ε̇)

< 1 .

The point of intersection corresponds to the transition strain-rate, i.e.:

t∗(ε̇T ) = t(Y )
∗ (ε̇T )

The example presented in Fig. 10.6 is given for hypothetical doped steel
with the following characteristics: σS = 700 MPa, σY = 400 MPA, τ =
0.5 µs, τY = 0.5 s, α = 11.

Fig. 10.6. Fracture mode as a function of strain-rate.

Fracture should follow ductile scenario if the strain-rate is less than ε̇T

and should be brittle otherwise. It is to be mentioned that for extremely
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high strain-rates there exists another point of intersection. It corresponds
to the reverse transition from brittle to ductile mode of fracture if, of course,
our model is still applicable for so high loading rates. It should be men-
tioned that some of the available experimental results indirectly confirm
the existence of such a point. The ratio of “fracture delay” t∗ to the “yield
delay” t(Y )

∗ plotted in Fig. 10.6 is minimized at some point. Strain-rate
corresponding to this point should be the most “dangerous” because the
probability of brittle fracture in this case is the highest.

This approach was used (Morozov et al., 2002) to estimate critical size
of a particle causing fracture in erosion problems. For particles with sizes
less than the critical one the erosion is ductile, otherwise it is brittle.

Now it is possible to find a correspondence between how rate and tem-
perature are affecting the fracture mode. Analysis based on criteria (10.1)
and (10.5) should take into account equations (10.12–10.15). If the tem-
perature of ductile-to-brittle transition is experimentally determined for a
given loading rate then one can numerically obtain the critical loading rate
for any other temperature. And vice versa: if the critical loading rate is
known for given temperature then one can calculate the temperature of
mode transition for any other loading rate.

Fig. 10.7. Reversed temperature dependence of yield delay.
Experimental points from and Sullivan (Kraft, Sullivan, 1959).
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Fig. 10.8. Extrapolation of stress-strain-rate diagrams for
mild steel to the range of extremely high strain-rates.

Analysis of (10.13) and (10.15) shows that the incubation time of yield-
ing τY is much more temperature sensitive as comparing to the incubation
time of fracture τ . Therefore, for low temperatures the increase in “yield
delay” is more significant than the increase in “fracture delay”. Hence for
a given loading rate decrease in temperature can result in occurrence of
brittle fracture instead of the ductile one. Moveover these equations show
that increase in the loading rate can remarkably increase the temperature of
fracture mode transition. Discussed phenomenon was observed in numerous
experimental works.
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10.5 Anomalous Behaviour of Yield Limit and
High Temperature Embrittlement

Consider yield delay dependencies presented in Fig. 10.1. In Fig. 10.7 one
can see that the slope of curves corresponding to higher temperature is
higher (α decreases as the temperature grows). Extrapolating these lines
for higher stresses one will receive intersection points corresponding to a
very small yield delay (or a very high stress applied). In connection with this
several questions arise. Are these values reachable? Can this phenomenon
be observed experimentally? If so, then for very short pulses increase in
temperature should lead to increase of the yield limit. If the value for yield
limit becomes higher than the strength (σS does not increase with temper-
ature) then the material embrittles as a result of heating. Examination of
data for mild steel (Figs. 10.4 and 10.8) leads to a similar conclusion. For
strain-rates in a range of 105 − 106 s−1, heating results in increase of the
yield limit and possible transition to brittle mode of fracture.

Fig. 10.9. Yield limit of single-crystal aluminum as a function of temperature.
Experimental points from Razorenov et al. (Razorenov et al., 2004), theoretical curve

from Petrov et al. (Petrov et al., 2007).

Experimental confirmation of these conclusions was recently received at
experiments with pure titanium (Kanel et al., 2003) and single-crystalline
aluminum (Razorenov et al., 2003). Using (10.5, 10.12–10.14) dependency
of the yield limit on temperature can be received. In Fig. 10.9 theoretical
prediction for yield limit as a function of temperature (Petrov et al., 2007) is
compared to experimental data (Razorenov et al., 2003). Explanation and
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detailed investigation of this phenomenon on the basis of the incubation
time approach was given by Petrov et al. (Petrov et al., 2007).

10.6 Conclusions

The incubation time based criteria for fracture and yielding showed to be
in a close agreement with experimental data for various materials in a wide
range of temperatures and strain-rates. Equations (10.5, 10.12–10.14) give
an explanation to both: “typical” decreasing and “anomalous” increasing
of the yield limit along with increasing temperature.
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Chapter 11

Incubation time criterion for
cavitation of liquids∗

Cavitation fracture of liquids. Incubation time ap-
proach to predict cavitation in liquids. Influence of
viscosity on cavitation criterion

11.1 Introduction

Cavitation, discontinuity arising in a liquid under the action of tensile stress,
is a highly time-dependent process. If the load is applied for a sufficiently
long time, cavitation occurs at some critical tensile stress (cavitation thresh-
old, Pc). For a short-term load, however, achievement of a threshold is the
necessary but not sufficient condition. In (Chebaevskii, Petrov, 1973) the
effect of cavitation delay was found. In Venturi experiments with water-
glycerol mixtures, it was shown that cavitation occurs only if the critical
stress (pressure) persists for a certain time (about 80 µs). In other ex-
periments, an increase of the threshold load with decreasing time of its
application was noted. For example, in experiments on pulsed loading of
distilled water (Besov, Kedrinskii, Morozov et al., 2001), the dependence of
threshold (the lowest failure) pressure P∗ on pulse duration T was obtained.
For microsecond pulses, the pulsed threshold load exceeded the static value
by several orders of magnitude. Similar dependences were observed for
glycerol (Utkin, Sosikov, Bogach, 2003, Erlich, Wooten, Crewdson, 1975).
Thus, one cannot adequately characterize cavitation initiation conditions
under short-term loading in terms of cavitation threshold. Consequently,
there arises a need for additional parameters describing the strength prop-
erties of liquids.

In this chapter papers by A. Gruzdkov, G. Volkov and Y. Petrov (Gruzd-
kov, Petrov, 2008, Volkov et al., 2007) are extensirely used.

∗Authors acknowledge Dr. A.Gruzdkov and Mr. G.Volkov for their significant
contribution to this chapter.
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11.2 Incubation time based criterion for cavitation

Existence of static and dynamic strength is a common property of liquids
and solids. Qualitative change in strength under short-term loading is as-
sociated with the fact that its duration in this case becomes comparable
to the characteristic time of transitions in the material. As for cavitation,
this process starts with appearance of cavitation nuclei, for which purpose
nearby layers of the liquid must be set in motion. If the quasi-static cavi-
tation criterion

P∗ ≥ Pc (11.1)

were valid for the loading duration as short as desired, it would come in
conflict with the momentum conservation law. Thus, not only the pressure
but also the momentum must reach a critical value to initiate cavitation.

Such an argumentation leads us to the momentum criterion:

t
∫

0

P (s)ds ≥ Wc, (11.2)

where P (s) is the tensile pressure. A number of authors (see, e.g., (Galiev,
1981)) suggested that criterion (11.2) should be applied to predict cavi-
tation under short-term loading. One can note that, in the case of slow
loading, criteria (11.1) and (11.2) contradict each other. In fact accord-
ing to (11.2), if the loading duration is large, cavitation may occur at as
small applied pressure amplitude as desired. To remedy the situation it
was proposed (Galiev, 1981) to carry out integration only over time in-
stants the applied pressure exceeds Pc. However, such a proposition seems
to be doubtful, since it assumes the irreversibility of load-induced varia-
tions, which is not the case for liquids. In addition, it is well known that a
below-critical pressure also has a considerable effect on cavitation nuclei.

We suggest a cavitation criterion similar to that used in analysis of spall
fracture in solids. To our opinion, the momentum should be taken into
consideration not throughout the loading process but over some finite time
interval, the characteristic time of bubble nucleation and growth. This time
will be called the incubation time (the “preparation” time of cavitation)
and designated by τ . Within a finite time interval the critical momentum
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criterion takes the following form:

t
∫

t−τ

P (s)ds ≥ Pcτ. (11.3)

It is assumed that the zero time coincides with the instant of load applica-
tion; that is, P (t) = 0 at t < 0. It is easy to check that criterion (11.3) is
equivalent to (11.2) at short-term loading with characteristic time T < τ
and to (11.1) at long-term loading (T / τ). The latter assertion becomes
clear if (11.3) is recast as a kinetic relationship.

Designating:

W (t) =
1

τ

t
∫

t−τ

P (s)

Pc
ds,

we obtain criterion (11.3) in the form:

W ≥ 1.

For parameter W having the meaning of accumulated damage, we can write:

dW

dt
=

1

Pc

P (t) − P (t − τ)

τ
, W (0) = 0.

In the formal limit τ →0 corresponding to loading with a characteristic
time far exceeding the incubation time, we have the relationship which is
the differential form of the static criterion (11.1). In essence, the the of
criterion (11.3) signifies discretization of the time scale.

Experimental data, however, indicate that it is appropriate to generalize
criterion (11.3) by introducing an additional parameter. From experiments
on very short loading (see, e.g. Besov, Kedrinskii, Morozov et al., 2001,
Utkin, Sosikov, Bogach, 2003, Erlich, Wooten, Crewdson, 1975), it follows
that respective data points are well fitted by a straight line in logarithmic
coordinates (Fig. 11.1). Thus, for threshold pressure in the cases of long-
and short-term loading, we have:

P∗ = Pc = const

and

Pα
∗ T = const (11.4)
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respectively (α is a dimensionless constant). Extending relationship (11.5)
for an arbitrary pressure versus time dependence, we modify criterion (11.3)
by introducing dimensionless formfactor α, which will describe the weight
(relative influence) of force and time factors. Taking into account the vari-
ability of the sign of pressure, we get the formula:

1

τ

t
∫

t−τ

sign(P (s))

(

|P (s)|
Pc

)α

ds ≥ 1. (11.5)

The onset of cavitation corresponds to the least value of time t for which
condition (11.5) is fulfilled.

11.3 Experimental data for water and glycerol

Cavitation in distilled water and glycerol subjected to microsecond loading
pulses was studied in (Besov, Kedrinskii, Morozov et al., 2001) and (Utkin,
Sosikov, Bogach, 2003, Erlich, Wooten, Crewdson, 1975) respectively.

In those experiments the zone of tensile stress appeared when a com-
pression wave was reflected from the free surface of the liquid. The pressure
versus time dependence in the incident (compression) wave was determined
by measuring the velocity of the free surface. The compression pressure
in the incident wave can be approximated by relationships (Besov, Kedrin-
skii, Morozov et al., 2001, Utkin, Sosikov, Bogach, 2003, Erlich, Wooten,
Crewdson, 1975):

q(t) = −Pamp sin(
πt

T
)e−

t
T1

for water (the damping period T1= 2.85 µs) and

q(t) = −Pamp

(

1 −
t

T

)

[H(t) − H(t + T ]

for glycerol (H(t) is the Heaviside step function). The pressure in liquid is
a superposition of forward (compression) and backward (stretching) waves,

P (x, t) = q

(

x −
t

c

)

− q

(

x +
t

c

)

.

Here, c is the sound speed and x is the distance to the free surface. The
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compression wave arrives at the free surface at time instant t = 0; hence:

q(t) = −
Pamp

T

(

T − t −
x

c

) [

H
(

t +
x

c

)

− H
(

t +
x

c
− T

)]

In calculations, the threshold (minimal) value of pressure amplitude Pamp

at which condition (11.5) was met at least for one value of coordinate x
was determined for each pulse duration T and then the threshold pressure
amplitude Pq was plotted against the load pulse duration. We used static
thresholds of cavitation, Pc, found experimentally: Pc = 0.1 MPa for water
and 6.3 MPa for glycerol. Parameters τ and α gere chosen so that the
calculated plots fitted the experimental data (for details of calculation see
(Besov, Kedrinskii, Morozov et al., 2001)).

Good agreement with the experiment (Figs. 11.2, 11.3) was achieved at
α = 0.5 and τ = 19 µs for water and α = 1 and τ = 2 µs for glycerol.
Fig. 11.2 plots the threshold value against the pulse duration; Fig. 11.3 re-
spectively, against parameter ε̇ = P∗

ρc2T introduced in (Utkin, Sosikov, Bo-
gach, 2003), and having the meaning of the strain rate.

While the difference between the dimensional parameters, static cavi-
tation threshold and incubation time was quite predictable for the liquids
studied, the considerable distinction between formfactors is unexpected.

11.4 Convection of the cavitation criterion with the
rayleigh equation

11.4.1 Statics and Dynamics of a Microbubble

It is of great interest to try to relate the macroscopic parameters describ-
ing the strength properties of the material to other characteristics and
attendant processes proceeding on the microlevel. The existence of the
static threshold is a direct consequence of the balance condition for a bub-
ble (Harkin, Nadim, Kaper, 1999, Pernik, 1966, Besov, Gruzdkov, Utkin,
2000). When the radius of a bubble exceeds critical value Rc, the bubble
becomes unstable and expands in the absence of the stretching pressure.
Since the static radius of bubble directly depends on the applied pressure,
the criterion:

R(t) ≥ Rc (11.6)

turns out to be equivalent to the criterion (11.1). Parameter Rc depends
primarily on initial radius R0 of cavitation nuclei and surface tension σ.
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Under dynamic loading radius of the bubble is related to the loading
history rather than being dependent on the current value of the applied
pressure. One equation of microbubble dynamics has the form (Harkin,
Nadim, Kaper, 1999, Pernik, 1966, Besov, Gruzdkov, Utkin, 2000):

RR̈ +
3

2
Ṙ2 = −

2σ

ρR
−

4µR̈

ρR
+

p0

ρ
+

p∞(t)

ρ
+

p1

ρ

(

R0

R

)3γ

, (11.7)

where ρ is the density, µ is the viscosity, p∞(t) is the applied stretching
pressure, p0 is the saturated vapor pressure, p1 is the gas pressure inside
the bubble, and γ is the adiabatic index.

11.4.2 Inviscid Liquid

In the case in question, the pressure amplitude significantly exceeds Pc

(by several orders of magnitude compared to the conditions considered in
(Besov, Kedrinskii, Morozov et al., 2001)). Since the surface tension force,
saturated vapor pressure, and pressure inside the bubble are of the same
order of magnitude as Pc, the quantities listed can be ignored and (11.7)
simplifies to (Pernik, 1966):

RR̈ +
3

2
Ṙ2 =

p∞(t)

ρ
. (11.8)

In terms of dimensionless variables

r =
R(t)

R0
,

∼
t =

t

T
, P (t) =

p∞(t)

Pamp
.

Equation (11.8) takes the form:

R2
0ρ

PampT 2

(

rr′′ +
3

2
(r′)2

)

= P (t).

It is seen that this equation remains unchanged provided that the quantity

M =
R2

0ρ

PampT 2
, (11.9)

which has the meaning of the reduced mass, is constant.
Parameters R0 and ρ are the characteristics of the liquid; therefore, we

are interested in the duration and the amplitude of the applied loading
pulse. Let, as in statics, cavitation start when the bubble grows up to a
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critical size; that is, it is assumed that criterion (11.6) is valid. Then for
any threshold amplitude of the pulse the relationship:

PampT
2 = const or T

√

Pamp = const (11.10)

holds true.

Fig. 11.1.

It follows from (11.10) that the formfactor should be set equal to
α = 1/2. Note that relationship (11.10) is depicted by the straight line
in Fig. 11.1, which fits the experimental data.

11.4.3 Viscous Liquid

If the viscosity is high, one more term should be left in (11.7). Then,
simplified equation (11.8) changes to:

RR̈ +
3

2
Ṙ2 +

4µṘ

ρR
=

p∞(t)

ρ
. (11.11)

Passing to the dimensionless variables yields:

M

(

rr′′ +
3

2
(r′)2

)

= −4m
r′

r
+ P (t), (11.12)

where m = µ
PampT is the dimensionless viscosity and M is given by (11.9).

Let us estimate these dimensionless variables for glycerol, in which case
σ =0.07 N/m, Pc = 6.3 MPa, T ≈ 0.1 µs, Pamp ≈ 10 MPa, µ = 1.48 Pa s,
and ρ = 1260 kg/m3.

Since Pc ≈ 2σ
R0

, we find that R0 ≈ 2 ·10−8 m and thus M ≈ 5 ·10−6 and
m ≈ 1.5.
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Since the right-hand side of (11.12) is of the order of unity and the left-
hand side is six orders of magnitude smaller, the latter can be neglected.
Then, the equation of bubble growth becomes similar to the equation of
pore growth (Shockey, Seaman, Curran, 1983) or microcrack propagation
(Seaman, Curran, Murri, 1985) in solid:

r′

r
=

P (t)

4m
, r(0) = 1. (11.13)

Accordingly:

dr

r
=

P (t)

4m
d
∼
t, r(0) = 1,

∼

t
∫

o

D(s)ds = 4m ln r(
∼
t ).

(11.14)

From (11.14) it follows, in particular, that the critical radius criterion
for a bubble given by (11.6) is equivalent to critical momentum criterion
(11.2) in the given case.

Fig. 11.2.

Equation (11.13) remains unchanged provided that dimensionless vis-
cosity m is constant. Taking into account that viscosity m is the property
of the liquid and is not related to loading conditions, we arrive at the con-
clusion that threshold loads must satisfy the relationship:

PampT = const; (11.15)

consequently, formfactor α must be equal to unity, which is in agreement
with the experimental data for glycerol (Fig. 11.3).
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11.4.4 Some Comments about Scaling Invariance

The incubation time criterion is closely related to the scaling invariance
of the loading parameters, which is defined, in general, by formula (11.4).
Depending on the ratio between M and m, formula (11.4) may coincide
with (11.10) or (11.15). Note, however, that both relationships are valid
for short pulses, since the expressions for m and M include pulse duration
and applied pressure amplitude. If loading is very slow (T → ∞), both
parameters are small; accordingly, terms of the order of Pc entering into
(11.7) cannot be neglected and the terms involved in the balance equation
for the bubble become leading terms.

It is easy to see from (11.7) that the energy transferred to the liquid via
loading is converted to the surface energy of bubbles, work done against
viscosity, and kinetic energy of adjacent layers of the liquid. Under quasi-
static loading the major part of the energy is converted into the surface
energy. If loading pulses are very short, the surface energy, conversely, is
low and the cavitation process is governed by competition between inertia
and viscosity. Of fundamental importance here is the ratio of the reduced
mass to the dimensionless viscosity:

m

M
=

Tµ

R2
0ρ

.

While this ratio formally becomes infinitesimal at T→0, such a situation is
unrealistic, e.g., for glycerol. It is natural to suppose that the contributions
of the viscous and inertial resistances are comparable to each other for many
real liquids. It seems that in this case the cavitation initiation condition
may be described by criterion (11.5) but with an intermediate value of the
formfactor.

11.5 Conclusions

It is shown that the incubation time criterion can be applied to analysis of
experimental data for cavitation in liquids subjected to short-term loading.

The parameters describing the dynamic strength of distilled water and
glycerol are determined.

It is demonstrated that scaling (11.4) of the pressure pulse parameters
(which is postulated by criteria (11.2), (11.3), and (11.5)) and the formfac-
tor value used in calculations can be explained using the equation of bubble
dynamics.
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Chapter 12

Incubation time criterion for
detonation∗

Detonation caused by pulsed energy input. New cri-
terion to predict conditions for detonation initiation.
Application of the new criterion to predict parame-
ters of the external impact producing detonation of
gaseous media

12.1 Introduction

Construction of a critical condition for detonation initiation is one of the
main issues while theoretically modelling processes incorporating media
detonation and deflagration-to-detonation transition (DDT).

An example illustrating an absolute necessity of the correct criterion,
providing a possibility to predict critical detonation initiation conditions is
the development of pulse detonation engines (PDE) carried out in differ-
ent scientific centres around the world. One of the central challenges while
constructing this type of engines is to develop an optimal way to initiate
detonation inside a combustion chamber. It was shown by multiple au-
thors (e.g. Frolov et al., 2005), that utilising traditional mixture lighting
schemes amount of energy that is hard or even impossible to achieve in
practice should be radiated inside the mixture in order to initiate detona-
tion inside PDE combustion chamber. Thus, a problem of optimization of
mixture lighting conditions appears. This problem is complicated by ab-
sence of a simple criterion able to predict with effectivity and reliability the
critical conditions leading to media detonation under every possible way of
supplying energy into the detonated media.

Currently the majority of utilized approaches in detonation initiation
(e.g. Levin et al., 2002, Levin et al., 2004, Vasil’ev, 2005) are connected
to the concept of critical detonation energy, introduced by Knystautas and

∗Authors acknowledge Mr. L. Isakov for his significant contribution to this chapter.
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Lee (Knystautas and Lee, 1976). At the same time a number of experimen-
tal studies of detonation initiated in gaseous media by electrical discharge
is known (e.g. Knystautas and Lee, 1976, Levin et al., 2004). In experi-
ments (Knystautas and Lee, 1976) authors were studying direct detonation
initiation in a gaseous mixture subjected to electric discharge. It was found
empirically (Fig. 12.2) that for their experimental conditions (Knystautas
and Lee, 1976) there exists a critical (minimal) energy Ecr that needs to
be radiated inside the mixture in order to initiate its detonation and time
tmix such, that for electric discharges with times tf from load onset to mo-
ment when peak averaged power (E(t)/t)max) is reached less than tmix,
critical energy Ecr does not depend on the discharge duration and is equal
to a constant E0 — minimal energy needed to initiate detonation of me-
dia in question. For tf > tmix critical energy is increasing with increasing
discharge duration. In (Knystautas and Lee, 1976) authors, using results
of their previous experiments assume that time tf , defined as time from
the moment of electric discharge onset to the moment when overtime av-
erage power (E(t)/t) is maximized, is the main characteristic of electric
discharge concerning detonation initiated by this discharge. Authors claim
that energy transmitted to media after tf cannot affect the fact of detona-
tion.

Similar results were received in analogous experiments by Levin et al.
(Levin et al., 2004). In the same work an empirically derived formula to
estimate minimal energy of detonation initiation for electric discharges with
tf > tmix was proposed:

Ecr =
E0

sin2(π · tmix/2tf)
.

Though in the particular experimental conditions carried out in (Levin
et al., 2004) this formula is able to describe the dependency of critical
energy on the electric pulse history, it is evident that for a different time
shape of the electric pulse this formula will be inapplicable. When the time
shape of an electric pulse creating discharge is changed one will need a new
empiric formula derivation. Evidently, this approach is hardy applicable
for practical use.

Thus, none of currently known theoretical approaches in detonation is
able to reliably predict a critical detonation conditions in arbitrary situation
(for example, to predict minimal amount of energy that should be radiated
by electric pulse of arbitrary shape, frequency and duration into gaseous
media in order to generate detonation of this media).
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Also the physical meaning of the time tmix, being, obviously, one of the
most important detonation process characteristics, is not evident yet.

Different criteria based on the concept of incubation time of a transient
process are discussed in the other chapters. A general form for criteria
based on the concept of the incubation time is given by:

1

τ

t
∫

t−τ

(

N(s)

Nc

)α

ds ≤ 1, (12.1)

where τ is the incubation time of the studied dynamic transition process,
being a parameter of the media subjected to transition and independent of
the way a load (or energy) is applied, N(t) — time dependent value char-
acterising the intensity of force impact (or energy input), Nc — its critical
value in conditions of “slow” energy input, α — dimensionless parameter
characterising sensitivity of a media to the rate of external force impact (or
energy input), t and s — are global and local time.

12.2 New criterion to predict detonation conditions

A new criterion to predict detonation in gaseous mixture was introduced
by Bratov, Isakov and Petrov (Bratov et al., 2008). As a critical condition
for detonation initiation in gaseous media the criterion using a new concept
of incubation time of a transient detonation process was proposed:

1

τ

t
∫

t−τ

U(s)ds ≤ Uc, (12.2)

where U(t) is time dependent power (time derivative of energy transmitted
to the media — speed of the energy input) transmitted to detonating me-
dia. τ is the incubation time of the detonation process (physical nature of τ
and possible ways of it’s experimental evaluation will be discussed below),
being an experimentally measured parameter characterising detonating me-
dia. Uc is the critical (minimal) value of energy input rate that is able to
initiate detonation of the media in question. It should be outlined that by
definition the incubation time τ and critical energy input rate Uc are not
depending on the way the energy is transmitted to the media, shape and
rate of energy pulse. These parameters depend only on the properties of the
detonating media (i.e. chemical composition, temperature, pressure etc.).
Moment t∗ when equality in (12.2) is fulfilled corresponds to the moment
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when critical situation that will definitely result in detonation initiation
(steady-state detonation wave will be formed) is reached.

Critical energy input rate Uc is the minimal rate at which one should
transmit energy to the media in order to initiate direct detonation. Suppose
that one has an ability to transmit energy to the media at arbitrary constant
rate UA: U = UAH(t), whereH(t)is the Heaviside step function. Obviously
direct detonation will never be initiated at “low” rates UA < Uc — formed
detonation wave will never reach steady-state regime. Increasing the rate,
its critical value Uc leading to formation of steady-state detonation wave
can be found. Thus, input of energy at rates lower than Uc do not lead to
detonation, while energy transmitted to media at higher UA ≥ Uc rate will
lead to detonation.

The incubation time of a detonation process is directly related to the
processes preceding formation of steady-state regime of the detonation wave
(this also includes chemical processes). τ is defined as a time from onset of
energy input to formation of critical media state that will definitely lead to
a steady-state detonation wave formation in an “ideal” experiment, when
energy is transmitted (starting from t=0) to the detonating media at the
constant rate equal to Uc: U = UcH(t).

From (12.2) it is evident that if energy is transmitted to the media
within time period t∗ that is shorter than the incubation time τ , all this
energy can be used to form a steady-state detonation wave. This explains
why in experiments (e.g. Knystautas and Lee, 1976, Levin et al., 2004) crit-
ical (minimal) energy Ecr needed to initiate detonation is constant whilst
mixture is detonated by “short” (shorter than τ) electric discharges. At
this point it can be concluded that time tmix experimentally measured in
(Knystautas and Lee, 1976) and (Levin et al., 2004) and above defined
incubation time τ are congruent.

12.3 Application of incubation time criterion of detonation
to predict experimental observation on detonation
initiation in gaseous media

Utilising formulated incubation time criterion for detonation, results of
known experiments on detonation initiation in gaseous media (Knystautas
and Lee, 1976) are modelled. In these experiments detonation was initiated
by electric discharges of controllable frequency and amplitude. Critical sit-
uation leading to formation of steady-state detonation wave was studied.
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Energy of an electric discharge transmitted to detonating mixture within
time t is given in these experiments by:

E(t) =

t
∫

0

i2(t)Rdt, (12.3)

where R is the resistance of the discharge gap, i is the current in electric
circuit, t is the absolute time. Current time-history at the electric discharge
initiating the detonation in (Knystautas and Lee, 1976) is approximated by:

i(t)=Ae−at sin(ωt) (12.4)

with A being the amplitude, a being the damping factor and ω being the
oscillation frequency of the current in the electric circuit.

In the conditions of the modelled experiments (Knystautas and Lee,
1976) incubation time criterion for detonation initiation (12.2) will take
the form:

1

τ

t
∫

t−τ

A2R · e−2as sin2(ωs)ds ≤ Uc. (12.5)

For a given discharge frequency ω minimal amplitude sufficient to initiate
direct detonation can be found from:

ε(t) = Uc, where ε(t) =
1

τ

t
∫

t−τ

A2R · e−2as sin2(ω · s)ds. (12.6)

ε(t) here gives the average discharge power (energy time derivative) over
time period (t − τ ; t).

Obviously integration interval in (12.6) can be found from the following
condition:

−
1

2
e−2at

(

−1 + e2aτ + cos(2tω) − e2aτ cos(2(t − τ)ω)
)

= 0. (12.7)

ε(t) value for time t, calculated from (12.7), should be compared to ε(τ).
The required integration interval (t∗-τ ; t∗), where t∗ is the time when crit-
ical media state, that will result in formation of the detonation wave is
reached, will correspond to the largest of these values. Substituting the
received t∗ into (12.6) one can find the critical value for pulse amplitude A.

Now the energy transmitted to the detonating media by an electric
discharge can be calculated. Using amplitude A, given by (12.6)–(12.7),
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the value for the critical energy, leading to detonation initiation, can be
received as a function of frequency of the electric discharge ω:

Ecr(T ) =

t
∫

0

A2R · e−2assin2(ωs)ds. (12.8)

Using the experimental data (Knystautas and Lee, 1976) presented by dots
on Fig. 12.2, it is easy to find the value for minimal energy E0 required to
initiate detonation in mixture used in the experiments (this is exactly the
critical detonation energy for “short” discharges) and the value for incuba-
tion time of detonation process τ , characterising processes preceding steady-
state detonation wave formation in the mixture used by Knystautas and Lee
(Knystautas and Lee, 1976) (as discussed above incubation time and time
tmix are congruent). These values are found to be: E0 = Ecr(t∗ <τ)=0.11
J/cm and τ=tmix =0.6 µs. Dividing the found critical energy by the incu-
bation time one can find the critical energy input rate Uc:

Uc = E0/τ = 0.183 · 106 J/cm · s.

Substituting obtained values for τ and Uc into (12.6)–(12.8), one will find
the required critical energy of detonation initiation as a function of time t∗
when critical detonation state is reached. (12.6)–(12.8) are solved numeri-
cally. Fig. 12.1 presents the received dependency.

As was correctly noticed by Knystautas and Lee (Knystautas and Lee,
1976), in their experimental conditions time t∗, when the critical state that
will lead to formation of stationary detonation wave is reached, is close
to the time tf when average power transmitted to media is maximized.
Although this is approximately correct for the shape of energy pulse used
in (Knystautas and Lee, 1976), according to (12.2) it can be wrong for
differently shaped pulses. According to (12.2) critical media state that will
result in direct detonation can be formed at a moment of time different from
the moment of peak average power. This should be particularly visible for
short (shorter then τ) discharges of threshold amplitude.

Thus, albeit experimental conditions (Knystautas and Lee, 1976), re-
sults presented in Fig. 12.1 are very close to the experimental points re-
ported in (Knystautas and Lee, 1976) (this due to previously discussed
coincidence of t∗and tf ), we make another calculation of energy transmit-
ted to gaseous media by threshold shaped discharge of duration tf using
incubation time criterion (12.2) in order to make an absolutely correct
comparison to data presented at (Knystautas and Lee, 1976). To do this,
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Fig. 12.1. Critical detonation initiation energy as a function of time t∗
when critical detonation state is reached.

threshold amplitude leading to formation of steady-state detonation wave is
found utilising (12.2) for every frequency of electric discharge (correspond-
ing to definite discharge duration tf ). Having the critical amplitude, energy
transmitted to detonating media by critical discharge with duration tf , can
be easily evaluated using (12.3) and (12.4). In Fig. 12.2 the experimental
results of Knystautas and Lee (Knystautas and Lee, 1976) are compared
to the results received using the new incubation time based criterion for
detonation initiation.

As seen from Fig. 12.2 incubation time model for direct detonation ini-
tiation based on the new criterion (12.2) is in a very good coincidence with
experimentally observed effects of detonation of gaseous mixtures.

12.4 Discussion

As already mentioned above, Uc and τ are parameters defining detonation-
connected properties of a media. Experimental evaluation of these con-
stants is possible utilising almost any possible experimental scheme. Here
it should be outlined that for the same media at similar conditions (tem-
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Fig. 12.2. Critical detonation initiation energy as a function of time to
average input power maximization. Results received using new model (firm
line) are compared to experimental points reported by Knystautas and Lee
(Knystautas and Lee, 1976).

perature, pressure etc.) measured values for incubation time of detonation
process and critical energy input rate should not depend on the experimen-
tal scheme used (i.e. how the energy is transmitted into the media).

One of the possible methods to measure Uc and τg is to conduct series
of experiments with detonation initiated by energy transmitted to deto-
nating media at different rates. In this case the threshold situation, when
detonation is induced by a pulse having minimal energy input rate suffi-
cient to initiate steady-state detonation wave, is of a special interest. If
this condition is fulfilled, then the incubation time of detonation process
will be equal to the time interval between energy input onset and the mo-
ment when critical state leading to formation of the detonation wave is
reached. Critical energy input rate Uc in this case will be equal to the
actual experimental energy input rate.
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12.5 Conclusions

It is shown that using the incubation time approach it is possible to predict
experimentally observed effects of detonation of gaseous media by electrical
discharge. Presumably the same or similar approach can be used to predict
critical detonation initiation conditions in liquid and solid explosives.

Having media parameters (incubation time and critical energy input
rate), that without considerable difficulties can be evaluated experimentally,
one is able to predict detonation of the media under arbitrary energy pulse.
Thus, for example, the problem of mixture lighting optimization (having
in mind energy input minimisation) is reduced to evaluation of incubation
time of the detonation process τ and the critical energy input rate Uc

for media in question (and possibly temperature-pressure dependency of
these parameters). When this is done, optimal energy saving shape and
amplitude for a pulse initiating detonation can be found using (12.2).

The concept of the incubation time of a detonation process is clearly
demonstrating the influence of recent energy input history on detonation
connected processes caused inside the media. Following this concept it
is important that a definite minimal energy should be transmitted to the
media within the incubation time τ in order to initiate its detonation. It can
be expected that the same (or a similar) approach can be used to predict
conditions influencing DDT in various explosive media.
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