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Abstract. In this paper incubation time fracture criterion is applied to perform numerical 
investigation of relation between stress intensity factor (SIF) and crack velocity observed in 
experiments by J.F. Kalthoff [1] for Araldite B. Two sample geometries were studied – double 
cantilever beam (DCB) and single edge notched sample (SEN). Quasistatic loading of these 
samples revealed existence of two branches of stress intensity factor – crack speed dependence 
corresponding to each sample geometry. Finite element method was used to perform numerical 
simulations of experiments by J.F Kalthoff and to study non-unique SIF – crack speed 
dependence.  
 
 
1. Introduction  
Uniqueness and even existence of stress intensity factor – crack velocity dependence for a 
moving crack have been studied by many researchers [2, 3]. Classic approach, based on 
fundamentals of dynamic fracture mechanics, supposes unique stress intensity factor (𝐾𝐾) – 
crack velocity (𝑎̇𝑎) dependence which is regarded as a material property [5]. However, studies 
on dynamic crack growth due to high rate loading [3] revealed that varying stress intensity 
factor might correspond to a crack with a constant velocity. J.F Kalthoff [1] conducted 
experiments on dynamic crack propagation in Araldite B specimens of different shape (double 
cantilever beam and single edge notched sample) due to quasistatic mode I loading. This work 
confirms existence of the stress intensity factor – crack speed dependence, however this 
dependence appeared to be different for samples with different geometry – 𝐾𝐾 values for the 
DCB sample appear to be up to 20 percent higher than those for the SEN specimen. Geometry 
dependent 𝐾𝐾 − 𝑎̇𝑎 dependence was also observed in work [5] where Homalite 100 and KTE 
epoxy specimens of various shapes were investigated.  

Such variety of experimental data on the 𝐾𝐾 − 𝑎̇𝑎 dependence exhibits need in a universal 
approach for the problems of dynamic crack propagation. Classic approaches based on critical 
stress intensity factor or ultimate stress concepts are not able to adequately predict and explain 
behavior of a fast moving crack. Application of classic fracture criteria taken from static 
fracture mechanics to problems of dynamic crack growth leads to discrepancies between 
experimental data and results of numerical analysis. In order to properly predict fracture in case 
of dynamically moving crack, transient effects and inertia of the medium should be taken into 
account and thus appropriate fracture criteria should be used. 

The aim of this work is to numerically simulate crack behavior in the DCB and SEN 
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specimens of Araldite B, observed in work by J.F. Kalthoff [1], using finite element method 
and incubation time approach to predict movement of the crack.  
 
2. Incubation time fracture criterion 
Incubation time criterion [6, 7] for brittle fracture at a point 𝑥𝑥∗ at time 𝑡𝑡∗, reads as 
 

1
𝜏𝜏 ∫

1
𝑑𝑑

𝑡𝑡∗

𝑡𝑡∗−𝜏𝜏 ∫ 𝜎𝜎(𝑥𝑥, 𝑡𝑡)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ≥𝑥𝑥∗

𝑥𝑥∗−𝑑𝑑 𝜎𝜎𝐶𝐶,            (1) 
 

where 𝜏𝜏 is incubation time – a characteristic time of a fracture process which is responsible for 
reaction of the material to application of dynamic loads, 𝜎𝜎𝐶𝐶 is ultimate stress of the studied 
material, 𝜎𝜎(𝑥𝑥, 𝑡𝑡) is stress at point 𝑥𝑥 and time 𝑡𝑡. Spatial size 𝑑𝑑 can be calculated using expression 
𝑑𝑑 = 2𝐾𝐾𝐼𝐼𝐼𝐼2 𝜋𝜋𝜎𝜎𝐶𝐶2⁄ , where 𝐾𝐾𝐼𝐼𝐶𝐶  is the critical stress intensity factor. This formula is obtained from 
the requirement of coincidence of (1) with Irwin-Griffith critical stress intensity factor fracture 
criterion in case of square root singularity. This parameter should be regarded as a characteristic 
size of the fracture process zone, being minimal size of the fractured medium for the preset 
scale level (e.g. minimal crack increment of the crack growth). In condition (1) stress field is 
supposed to be time-dependent and integration over time indicates that the history of stresses is 
taken into account or, in other words, the information about processes preceding fracture is 
controlled by a single measurable parameter – 𝜏𝜏. 𝑡𝑡∗ is time when macro fracture occurs which 
can be calculated from (1) if 𝑑𝑑, 𝜏𝜏 and 𝜎𝜎𝐶𝐶 are given and if stress field 𝜎𝜎(𝑥𝑥, 𝑡𝑡) is known (either 
from analytic solution or numeric computations). Within the framework of the incubation time 
approach, fracture is not an instantaneous event, being result of series of complicated processes 
preceding fracture (e.g. growth of microcracks or coalescence of micropores). Incubation time 
parameter makes it possible to take into account these effects representing characteristic time 
needed for the fracture to develop. 

One should note here that for cases of slow application of loading, which results in times 
to fracture much higher than 𝜏𝜏, criterion (1) is reduced to Novogilov-Neuber fracture criterion 
[8, 9]. Additionally, incubation time criterion is capable of brittle fracture prediction in those 
cases when stress field is not characterized by square root singularity (e.g. angular notches).  
 
3. Crack propagation experiments and simulations 
In [1] authors presented experimental results on dynamic crack propagation in Araldite B 
specimens of three types: double cantilever beam (DCB), single edge notches specimen (SEN) 
and a mixed type. The authors utilized method of caustics to measure dynamic stress intensity 
factor. Position of the crack tip was also known at each moment of time and thus crack velocity 
values were available in course of the experiment. All the specimens had an artificial initial 
crack, which started to grow due to quasistatic loading. Shape and dimensions of the 
investigated specimens are shown in Fig. 1.   
 

 
 

Fig. 1. Geometry of specimens studied in [1]. 
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To simulate experiments, discussed in [1], finite element method was used. FEM software 
ANSYS with additional С++ routine, which controls crack propagation process were used. The 
C++ code calculated integral from (1) and compared it to the ultimate stress of the material at 
every time step of the solution.  

In the discussed experiments crack propagated across the sample separating it into two 
equal parts and thus crack propagation path coincided with the symmetry line for the samples. 
This feature was used in course of the simulation and only half of the sample was simulated 
with an appropriate application of symmetry conditions. Material properties for Araldite B were 
taken from [10]. Incubation time is not known for the studied material. It was chosen to be of 
one order with PMMA incubation time used in [11] and equal to 1.1 𝜇𝜇𝜇𝜇. 

Crack movement was implemented using node release technique. If relation (1) held in a 
particular node on the crack path, displacement restrictions were removed from this node and 
crack tip moved to a subsequent node. One should note here that element size was chosen to be 
equal 𝑑𝑑 and thus minimal increment of the crack propagation was equal to the structural size 
used in (1). 

Material of the simulated specimens was supposed to exhibit linear elastic behavior. The 
following initial and boundary value problem was solved 
 

𝜌𝜌 𝜕𝜕2𝑈𝑈𝑖𝑖
𝜕𝜕𝜕𝜕2

= (𝜆𝜆 + 𝜇𝜇)∇𝑖𝑖�∇ ∙ 𝑈𝑈��⃗ � + 𝜇𝜇∆𝑈𝑈𝑖𝑖,        

𝜎𝜎𝑖𝑖,𝑗𝑗 = 𝛿𝛿𝑖𝑖,𝑗𝑗𝜆𝜆∇ ∙ 𝑈𝑈��⃗ +  𝜇𝜇 �𝜕𝜕𝜕𝜕𝑖𝑖
𝜕𝜕𝜕𝜕𝑗𝑗

+ 𝜕𝜕𝜕𝜕𝑗𝑗
𝜕𝜕𝜕𝜕𝑖𝑖
�,         

𝑈𝑈��⃗ (𝑋𝑋, 𝑡𝑡 = 0) = 𝜕𝜕𝑈𝑈��⃗

𝜕𝜕𝜕𝜕
(𝑋𝑋, 𝑡𝑡 = 0) = 0, 

𝜎𝜎𝑖𝑖,𝑗𝑗(𝑋𝑋, 𝑡𝑡 = 0) = 𝜕𝜕𝜎𝜎𝑖𝑖,𝑗𝑗
𝜕𝜕𝜕𝜕

(𝑋𝑋, 𝑡𝑡 = 0) = 0,           (2) 
𝑈𝑈𝑦𝑦(𝑋𝑋 ∈ Γ1, 𝑡𝑡) = 𝑣𝑣𝑣𝑣,    
𝑈𝑈𝑦𝑦(𝑋𝑋 ∈ Γ2, 𝑡𝑡) = 0 – symmetry condition, 
𝜎𝜎𝑦𝑦(𝑋𝑋 ∈ Γ3, 𝑡𝑡) = 𝜎𝜎𝑥𝑥𝑥𝑥(𝑋𝑋 ∈ Γ2 ∪ Γ3, 𝑡𝑡) = 0. 
 

Here 𝑋𝑋 = (𝑥𝑥1, 𝑥𝑥2) = (𝑥𝑥,𝑦𝑦) is the coordinate couple, 𝑈𝑈��⃗ = (𝑈𝑈1,𝑈𝑈2) = �𝑈𝑈𝑥𝑥,𝑈𝑈𝑦𝑦� is the 
displacement vector and 𝑉𝑉 is movement rate of the tensile machine cross head. See Fig. 2 for 
details. 
 

 
 

Fig. 2. Simulation scheme for the DCB sample (a) and SEN sample (b). 
 
Time step for the solution was chosen so that the fastest wave could not cross the element during 
one time step. At each load step of the solution 𝐾𝐾𝐼𝐼 was calculated using 𝐽𝐽-integral method.  
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4. Simulation results  
Figure 3 demonstrates both experimental and computed 𝐾𝐾 − 𝑎̇𝑎 dependencies for DCB and SEN 
specimens of Arladite B. The DCB values of the stress intensity factor appear to be around 
20 % higher than for the SEN sample, which fits well experimental data. 
 

 
 

Fig. 3. 𝐾𝐾 − 𝑎̇𝑎 for specimens of different shape. Experimental data and results of the 
simulation. 

 
Incubation time fracture criterion appears to be a robust tool for simulation of crack 

movement in various conditions including both quasistatic and dynamic loading [11, 12]. As 
seen from results of the presented work, effect of multiple branches of stress intensity factor – 
crack velocity dependence can be also investigated using incubation time approach. 
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