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1. ENERGY APPROACH
TO THE FRACTURE PROBLEM

The classical approach to fracture mechanics going
back to Griffith is based on the statement that a crack
propagates if this process leads to a decrease in the total
energy ε of a system. For a plate of unit thickness, the
crack-growth conditions can be written as

. (1)

Griffith initially interpreted the quantity 2γ as the
surface energy, because it represented the specific work
(per unit area) expended to form a new surface. Irwin
and Orowan showed that this quantity should be inter-
preted as the total work (including the plastic one) in
the fracture zone. This work can be taken as the resis-
tance to a certain dissipative process proceeding in a
small region near the crack tip. The study of this char-
acteristic includes the determination of its physical ori-
gin (different for different classes of materials) and its
measurement.

For the fracture near the crack tip loaded by mode I,
criterion (1) is equivalent to the criterion for the critical
stress-intensity factor KI ≤ KIc. For a linearly elastic
body, the Griffith constant is equal to

, (2)

where E is Young’s modulus. Thus, γ can be indirectly
determined in this case from the standard tests for mea-
suring KIc.

Nowadays, it is generally recognized [1] that the
expenditure energy per unit area of a fracture surface
essentially depends on the action duration. Other char-
acteristics of dynamic fracture (critical intensity factor,
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limiting amplitude of applied load) also essentially
depend on time. Therefore, the problem of determining
the Griffith specific surface energy is urgent for high-
rate fracture.

2. DYNAMIC TESTS

It is impossible to adequately study the energy bal-
ance by conventional methods of creating short-term
loads, because it is very difficult to estimate the energy
fraction directly transferred to a specimen. In particu-
lar, the parameters of explosive or shock action can be
estimated only approximately. For most cases, energy
exchange between the specimen and a loading device is
rather complicated [2], which makes it impossible to
authentically determine the stage at which fracture
occurs.

The procedure using a magnetic pulse installation is
free of the above disadvantage. Load is formed by the
magnetic-pulse method, where the mechanical pressure
depends on the spatial configuration of current-carrying
elements [3–5]. For a known current distribution, the
current-pulse parameters are unambiguously related to
magnetic pressure. In addition, the energy state of the
specimen at the instant of fracture can be determined
quite exactly in many cases. This determination is pos-
sible for the following reasons. First, the pressure on
cut edges is monitored throughout the pulse (about 1–
10 µs). Second, high-speed shooting of the fracture pro-
cess makes it possible to precisely determine the instant
at which cracks start. In certain cases, it can occur after
the disappearance (removal) of the external pressure
pulse. Third, after the termination of the pulse action,
the specimen does not interact with the installation;
hence, the specimen under fracture becomes an ener-
getically closed system.

The indicated principles were realized in the run of
tests for specimens with a cut modeling a macrocrack.
The specimens were manufactured from spheroplastics
(120 × 120 × 10-mm specimens with a 60 × 2.2-mm
cut) [3] and polymethyl methacrylate (200 × 200 ×
10-mm specimens with a 100 × 3-mm cut) [4, 5]. At the
cut tips, we made a 0.2-mm-thick notch 3 mm in length.
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The cut edges were loaded by uniform pressure approx-
imated by the dependence

(3)

For each pulse duration T, the dependence of the
crack-growth length on the applied-load amplitude A
was studied. We aimed to determine the threshold
amplitude. The obtained dependences were well
approximated by the linear functions (Fig. 1)

(4)

The quantity A0 is the threshold amplitude above
which the crack begins to grow. This quantity was
found by extrapolating the experimental data to the
value ∆L = 0.

The high-speed shooting of the fracture process
revealed a delay of the onset of crack growth relative to
the instant at which the stress-intensity factor reaches
its maximum [6]. In this case, the time before the onset
of crack growth is appreciably longer than the time of
action of the external pressure pulse. Hence, the total
energy of the external action is converted to the elastic
and kinetic energy of the material, and the crack prop-
agation is further determined by this internal energy.
Since the potential of external forces is equal to zero at
the instant of fracture near the crack tip, it is possible to
consider that the function ε in Eq. (1) coincides with the
internal energy of the specimen.

3. ENERGY BALANCE

We analytically estimate the energy transferred to
the specimen due to interaction with the installation.
During the load action, the wave has no time to pass
along the cut edges; therefore, in the first approxima-
tion, it is possible to consider the problem of a plane
wave in a half-space:

Here, x and U are the coordinate and the longitudinal
displacement, respectively; c is the longitudinal-wave
velocity; t is the time; and ρ is the density. Solving the
problem with Eq. (3), we derive the expression for the
energy transferred to the specimen:

(5)
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where D is the cut length, H is the plate thickness, and
A and T are the parameters of the pressure pulse from
Eq. (3).

To prove the correctness of this approach for esti-
mating the energy transferred to a plate during the con-
tact, we numerically analyzed the three-dimensional
problem of the interaction of a specimen with a loading
device [7]. Using a finite-element software package,
we calculated the energy transmitted to the specimen
during the contact with the current-carrying bus.
For estimating this energy, it suffices to numerically
simulate only an early stage of the process, and pre-
cisely during the pressure-pulse action from the bus
side, and then to estimate the energy involved in the
specimen.

As a result, we obtained data on the total energy of
the specimen. Thus, similar to analytical calculation,
the total energy of the system including its kinetic com-
ponent is taken into account.

The simulation was carried out for polymethyl
methacrylate specimens at three different durations of
the action pulse. The table presents the energies trans-
ferred to the specimen as calculated by both Eq. (5) and
the finite-element method. The good agreement
between them supports the applicability of this
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Fig. 1. Experimental data on the length Lcr of a crack grown
from the cut tip vs. the amplitude P of rupturing pressure
pulse for (a) polymethyl-methacrylate specimens at the
time of a pulse increase to the maximum (1) 1, (2) 2, and
(3) 4.6 µs and for (b) spheroplastic specimens at the time of
a pulse increase to the maximum (1) 4.4 and (2) 2.76 µs.
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approach for estimating the energy transferred to the
specimen during the contact.

4. CONDITION OF CRACK GROWTH

From Eq. (4), it follows that the crack-length incre-
ment is related to the increment of the amplitude of the
applied pulsed pressure as dL = kdA. Taking into
account Eq. (5) and dS = HdL, we obtain the specific
(per unit area) energy consumption on fracture at the
crack onset

If the time of travel of an elastic wave along a cut

dε
dS
------

∆L 0=

3T A0D
4kcρ

------------------.=

1000

101 100

100

10000

Polymethyl methacrylate

Spheroplastics

µs

2γ, J/m2

Fig. 2. Fracture energy consumption vs. the loading-pulse
duration (the dashed lines correspond to quasistatic tests)
for (triangles) polymethyl methacrylate and (circles)
spheroplastic.

Table 

T, µs A, MPa

Energy, J

by Eq. (5) finite-element 
calculation

2 172 4.17 4.00

4 93 2.44 2.32

8.6 48 1.40 1.33
exceeds the time interval from the loading-application
instant to the crack onset, i.e., for sufficiently large
specimens, only an effective area D∗  = ct∗ , where t∗  is
the time before the crack onset, instead of the total cut
length, must be taken into account when calculating
the fracture energy consumption. In this case, we
derive the following relation for the specific energy
consumption:

(6)

The quantity γd is an analogue of the quantity γ in
Eq. (1). Since c and ρ are the known material parame-
ters, and A0, k, and t∗  are determined experimentally for
the pulses of various duration T, Eq. (6) yields this
quantity as a function of load duration.

5. DISCUSSION OF THE RESULTS

Figure 2 shows that γd exceeds the value calculated
from Eq. (2) using the results of quasistatic tests by
more than an order of magnitude. However, as the load
duration increases, this value decreases markedly. For
polymethyl methacrylate, the points calculated from
Eq. (6) lie on a straight line plotted in logarithmic coor-
dinates; i.e., the relation γdT α = const is met for micro-
second loads.

The results of the finite-element simulation show
that the kinetic and potential components of the energy
are comparable. Thus, at the action rates realized in the
experiments at the magnetic-pulse installation, it is
unjustified to neglect the kinetic energy of a material.
Moreover, the inclusion of the kinetic energy can qual-
itatively change the behavior of the fracture energy
consumption.

The basic advantage of the applied testing scheme is
that there is no energy exchange between a specimen
and a loading device after the termination of the pres-
sure-pulse action, and fracture begins to develop after
removing load when the specimen becomes energeti-
cally closed.
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