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Abstract

A problem for a central crack in a plate subjected to plane strain conditions is investigated. Mode I crack loading is
created by a dynamic pressure pulse applied at large distance from the crack. It was found that for a certain combination
of amplitude and duration of the pulse applied, energy transmitted to the sample has a strongly marked minimum, mean-
ing that with the pulse amplitude or duration moving away from the optimal values minimum energy required for initia-
tion of crack growth increases rapidly. Results received indicate a possibility to optimize energy consumption of different
industrial processes connected with fracture. Much could be gained in for example drilling or rock pounding where energy
input accounts for the largest part of the process cost. Presumably further investigation of the effect observed can make it
possible to predict optimal energy saving parameters, i.e., frequency and amplitude of impacts, for industrial devices, e.g.,
bores, grinding machines, etc. and hence significantly reduce the process cost. The prediction can be given based on the
parameters of the media fractured (material parameters, prevalent crack length and orientation, etc.).
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

A possibility to optimize the amount of energy, required to fracture materials is of a large interest in con-
nection with many applications. Energy inputs for fracture induced by short impulse loadings are of the major
importance in such areas as percussive, explosive, hydraulic, electro-impulse and other means of mining, dril-
ling, pounding, etc. In these cases energy input usually accounts for the largest part of the process cost (see, for
example, Royal Dutch Petroleum Company Annual Report, 2003). Taking into consideration the fact that the
efficiency of the mentioned processes rarely exceeds a few percent the importance of energy inputs optimiza-
tion gets evident.
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The purpose of the present investigation is to find and explore the amount of energy sufficient to initiate the
propagation of a mode I loaded central crack in a plate subjected to plane strain deformation. Two ways to
apply the dynamic load to the body are studied. In the first case the load is applied at infinity. The study
involves the analysis of interaction of the wave package approaching from infinity with an existing central
crack in a plane. The existing crack is oriented parallel to the front of the wave package. In the second case
the load is applied at the crack faces. Tractions are normal to the crack faces.

Following the superposition principle these two loading cases should produce identical stress–strain field in
the vicinity of the crack tip. It will be shown later that the amount of total energy applied to the body needed
to initiate crack growth is depending on the load application manner in different way for the two cases under
investigation.
2. Load applied at infinity

Consider an infinite plane with a central crack (Fig. 1). The load is given by the wave, falling on the crack.
Displacements of the plane are described by
Fig. 1.
crack
qui;tt ¼ ðkþ lÞuj;ji þ lui;jj; ð1Þ
where ‘‘,’’ refers to the partial derivative with respect to time and spatial coordinates. q is the mass density, and
the indices i and j assume the values 1 and 2. Displacements are given by ui in the directions xi, respectively. T

stands for time, k and l are Lame constants. Stresses and strains are coupled by Hooke’s law:
rij ¼ kdijuk;k þ lðui;j þ uj;iÞ; ð2Þ
where rij represents stresses in direction ij, dij is the Kronecker delta assuming value of 1 for i = j and 0 other-
wise. Boundary conditions are
r22jjx1j<l;x2¼0 ¼ r21jjx1j<l;x2¼0 ¼ 0: ð3Þ
The impact is delivered to the crack by the falling wave:
r22jt<0 ¼ P H t þ x2
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Experiment scheme. Central crack in an infinite plane is loaded by a wave approaching from infinity. Wave front is parallel to the
plane.



Fig. 2. Typical stress intensity factor ðPa
ffiffiffiffi
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p
Þ time (ls) dependence in FE solution.
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where c1 is the longitudinal wave speed, H is the Heaviside step function and T is the impact duration. P rep-
resents the pressure pulse amplitude and has a dimension of Pa. The described problem is solved using finite
element method.

3. Modeling interaction of the wave coming from infinity with the crack

The process is analyzed utilizing the finite element method. ABAQUS (see ABAQUS USER MANUAL)
finite element package was used to solve the problem. The task was formulated for a quarter sample using the
symmetry of the problem about x- and y-axes. Plane strain conditions were supposed. Area adjacent to the
crack tip was meshed with triangular isoparametric quarter-point elements available in ABAQUS package.
Thus, mesh in the vicinity of the crack tip may assume a square root singularity in stress/strain fields. The total
of about 30E5 elements were used to model the cracked sample. Crack surface was represented by 50 nodes
along the crack’s half-length. Explicit time integration was utilized to solve the dynamical problem in
question.

Computations were performed for granite (E = 96.5 GPa, q = 2810 kg/m3, m = 0.29, where E is the elastic-
ity modulus and m the Poisson’s ratio). The results of investigation will qualitatively hold for a big variety of
quasi-brittle materials.

In conditions of the plane strain, interaction of the wave approaching from infinity with a central crack was
investigated.

Firstly, infinite impulse durations were supposed, i.e., T =1. Time dependence of the stress intensity factor
KI was studied. KI used in a further analysis was calculated from J-integral that is available as a direct output
from ABAQUS solution. Computations were performed for different amplitudes of the loading pulse applied.
Typical dependence of KI on time is presented in Fig. 2.

Apparently, KI is rapidly approaching the static level. Thus, the time to approach the steady-state situation
in a vicinity of a crack tip can be estimated as 5–10 times more than the time required by the wave to travel
along the crack’s half-length.

Fracture criterion fulfillment was checked for different load amplitudes and durations. Dependence of time-
to-fracture T* on the amplitude of the load applied was investigated. Time-to-fracture is the time from the
beginning of interaction between the wave package and the crack to the crack start. Morozov–Petrov incuba-
tion time criterion of fracture (Morozov and Petrov, 2000) was chosen to be used. Similar approach to be used
in case of short cracks is given by Petrov and Taraban (1997).

4. Incubation time criterion of fracture

For a mode I loaded crack Morozov–Petrov incubation time (or structural time) criterion (Morozov and
Petrov, 2000) can be written as



Fig. 3. Curve limiting the pulses leading to crack propagation. Time-to-fracture (ls) vs. applied pressure amplitude (Pa).
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Z t

t�s
KIðt0Þdt0 < KICs; ð5Þ
where s is the microstructural time of a fracture process. s is assumed to be constant for a given material.
Criterion (5) originally proposed in 1987 (Petrov and Utkin, 1989), showed its applicability to describe frac-

ture of brittle materials in dynamic conditions. Utilizing Morozov–Petrov criterion (see, for example, Petrov
and Morozov, 1994; Petrov et al., 2003) one is able to describe effects typical for fracture dynamics (see, for
example, Ravi-Chandar and Knauss, 1984; Dally and Barker, 1988; Smith, 1975), which is not possible while
staying within the frames of classical fracture mechanics.

As follows from the criterion adopted, fracture depends not only on the stress field in vicinity of a point, but
also on the history of a stress field development. In an extreme case when a load is applied in a quasi-static
way, crack propagation starts at time t + s where t is the moment when KI has reached the critical for
quasi-static situation value of KIC. For quasi-static loadings t� s and prediction given by Morozov–Petrov
criterion coincides with classical Irwin approach (Irwin, 1957).

Using criterion (5) dependence of time-to-fracture on the amplitude of the load pulse applied was studied.
Values of KIC ¼ 2:4 MPa

ffiffiffiffi
m
p

and s = 72 ls typical for granite under investigation were used. Integration of
the temporary dependence of stress intensity factor was done numerically. In Fig. 3 x-axis represents the time
from the beginning of interaction of the wave coming from infinity with the crack to the fracture initiation. y-
Axis represents the corresponding amplitude of the load applied at infinity. Point in Fig. 3 marked with a cross
corresponds to the maximum possible time-to-fracture for a given problem. As follows, for investigated gran-
ite and studied experimental conditions fracture is only possible for times less than 92 ls.

At the same time the critical (threshold) amplitude of the applied load was found. This amplitude corre-
sponds to the maximum time-to-fracture possible. Loads with amplitudes less than the critical one do not
increment the crack’s length.

5. Dependence of the energy inputs for fracture on the load amplitude and duration

At this point we examine the specific momentum transferred to the plane under investigation by a loading
device. In our case
P ðtÞ ¼ P ðHðtÞ � Hðt � T ÞÞ; ð6Þ
so the specific (per unit of length) momentum of the impact will be
R ¼ PT : ð7Þ
Area filled in Fig. 4 corresponds to a set of momentum values causing fracture. For the values out of this area
crack propagation does not occur. The minimum value for the momentum incrementing the crack length



Fig. 4. Filled area corresponds to a set of possible pulses leading to crack initiation. At T = 72 ls momentum R (kg m/s) needed to
advance the crack is minimized.
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(44.7 kg m/s) is reached at impulse with duration of 72 ls while the amplitude of the load exceeds the minimal
one by more than 10%.

Now we come to examination of the energy transmitted to the sample by a virtual loading device in the
process of impact. The shape of the load applied is given by (6). A specific (per unit of length) energy trans-
mitted to the stripe can be calculated using solution for the uniformly distributed load acting on a half plane.
This problem can be easily solved utilizing D’Lambet method. Solution for a specific energy transmitted to the
half plane appears to be
Fig. 5.
is mini
espec ¼
1

cq

Z T

0

P 2ðtÞdt: ð8Þ
c here is the same as c1 and gives the longitudinal wave speed. This result can be used for the problem under
investigation as interaction of the loading device and the sample is finished before the waves reflected from the
crack come back. Substitution of (6) into (8) gives espec ¼ P 2T

cq .
Analogously to Fig. 4, we plot a limiting curve for a set of energies that, being transmitted to the sample,

cause the crack propagation (Fig. 5).
Filled area corresponds to a set of possible pulses leading to crack initiation. At T = 78 ls energy e (J) needed to advance the crack
mized.
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Minimum energy able to increment the crack length (172E6 J) is reached at load pulses with duration of
78 ls. As it is evident from Fig. 5, minimal energy, required to propagate the crack by impacts with durations
differing much from the optimal one, significantly exceeds the minimal possible value. Thus, minimum energy,
incrementing the crack for the load with duration of 92 ls (at this impact duration crack propagation is pos-
sible with the impact of threshold amplitude), will exceed minimal energy possible by 10%, and at duration of
40 ls it will be more than two times bigger.
6. Case of a load applied at the crack faces

Now we consider a problem similar to the previous one, but with the load applied not at infinity but on the
crack faces. The problem is solved numerically and in the same manner as the one for the load applied at infin-
ity. Obviously, according to the superposition principle, the solution will coincide with the one for the stripe
stretched by a load applied at infinity. Thus, all the consequences of the previous solution are applicable,
except for estimations of energy. Specific momentum transmitted to the sample will be the same as the one
in the previous problem.

It is not possible to estimate energy transmitted to the sample analytically for the situation, when the load is
applied at the crack faces. However, the finite element solution can be used in this case to estimate this energy.
Fig. 6 represents time dependence of full, kinetic and potential energies of deformation contained in a loaded
sample for a particular pressure amplitude.

Firstly, the kinetic energy is growing linearly along with the potential one, in the same manner as it happens
in the case with the loaded half plane. However, at the moment of time equal to the time sufficient for a wave
to travel along the crack length, kinetic energy is starting to transform into potential energy of deformation.
Some part of the energy is returned to the loading device.

Limiting curve for the set of energies incrementing the crack length is presented in Fig. 7a. As it can be
noticed in the case of the load applied at the crack faces, the energy input to increment the crack length
has no marked minimum. Minimum energy needed to produce fracture in this case is decreasing with the
growth of impulse duration. When the duration is equal to maximal time-to-fracture possible, energy reaches
the minimal value.
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Fig. 6. Transmitted energy (J) time (ls) dependence.



Fig. 7. Energy minimization. Possible energy (J) quantities transmitted to a sample by a loading device depending on load duration (ls).
(b) Enlarges part of (a).
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Fig. 7b enlarges the area adjacent to the point where the minimal energy is firstly reached in Fig. 7a. As
follows from Fig. 7b for the pulse durations close to the maximal possible time-to-fracture (92 ls), minimal
energy input needed to increment the crack is not much different from the minimum value firstly achieved
at 92 ls.
Fig. 8. Finding optimal pulse amplitude. Possible energy e (J) values for different pressure amplitudes P (Pa).
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7. Optimization of the load parameters to minimize energy cost for the crack growth

With the majority of non-explosive methods used to fracture materials (drilling, grinding, etc.) it is possible
to control amplitude and frequency of impacts from the side of a rupture machine. The performed modeling
shows that at a certain load duration (at impact fracture of big volumes of material impulse duration is con-
nected to the frequency of the machine impacts) energy inputs for crack propagation has a marked minimum.

Analogously to Fig. 5, it is possible to plot the limiting curve for the set of energy values leading to prop-
agation of a crack in the sample at different load amplitudes. This is done in Fig. 8. Thus, it is possible to
establish ranges of amplitudes and frequencies of load, at which energy costs for fracture of the material
are minimized. These ranges are dependent on parameters of fractured material, predominant length of exist-
ing material cracks and the way the load is applied.
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Fig. 9. Dependence of optimal load duration (ls): (a) amplitude (Pa) and (b) on crack length (mm).
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Fig. 10. Dependence of optimal load amplitude (Pa) on crack length (mm).
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8. Dependence of the load parameters minimizing the energy for fracture on the length of the existing crack

Dependence of the optimal load parameters on the crack length was also studied. The results received are
represented in Fig. 9a and b. As follows from Fig. 9a duration of the load, that minimizes energy, and momen-
tum inputs are linearly or quasi-linearly dependent on the existing crack length. With the disappearing crack
length the duration of the load minimizing momentum needed to increment the crack approaches zero. At
the same time the duration optimal for the energy inputs most probably tends to the microstructural time of
the fracture process s. Maximum possible time-to-fracture also tends to the microstructural time of fracture.

Thus, considering intact media as the extreme case of media with cracks when the crack length goes to zero,
we find that the maximum possible time-to-fracture is the same as the microstructural time of the fracture pro-
cess. Durations of the loads being optimal for the energy inputs for the fracture of intact media are also equal
to the microstructure time of the fracture process. Amplitudes of loads, that minimize energy and momentum
sufficient to increment the crack length, are presented in Fig. 9b.

As expected, the amplitude of the threshold impulse is inversely dependent on
ffiffi
l
p

, where l is the crack
length. Dependence of amplitude, minimizing energy inputs, from the crack length is close to 1=

ffiffi
l
p

. The ampli-
tude, minimizing momentum, is back proportional to the crack length. When the crack length is close to zero,
the amplitude of the load, that minimizes the energy cost of the crack propagation, is close to threshold ampli-
tude. However, the amplitude, minimizing the energy input, deviates from the threshold amplitude more and
more with the growing crack length (Fig. 10).
9. Conclusions

The results received stand for a possibility to optimize energy consumption of different fracture connected
industrial processes (for example, drilling, grinding, pounding, etc.). It is shown that the energy cost of crack
propagation strongly depends on the amplitude and frequency of the load applied. For example, in the studied
problem when the frequency of the load differs from the optimal one by 10%, energy cost of the crack start is
exceeding the minimal value by more than 10%.
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The obtained dependencies of the optimal characteristics of a load pulse on the existing crack length can
help predicting energy saving parameters for the fracture processes investigating the predominant crack size
in a fractured material.

Planned research includes a study of the energy costs for fracture of media weakened by a system of cracks
of a uniform length. This problem models fracture of media with a predominant size of cracks or defects. It is
also important to study energy inputs for fracture of a media with two or more predominant crack lengths.
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