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Abstract: Apparently for the first time, shear shock wave fronts (shear shocks) are observed
in a hyperfoam at the propagation of shear waves. The hyperfoam is modelled by the
Ogden compressible hyperelastic potential. A possible appearance of the shear shocks may
explain the kinetic and strain energy attenuation along with heat release at the propagation
of shear waves in hyperfoams. The analysis is based on the Cauchy formalism for equations
of motion, equations of energy balance, and FE analysis for solutions of the constructed
nonlinear hyperbolic equation.
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1. Introduction
1.1. An Overview

It has long been known that discontinuities in strain, stress and phase velocity, known
as strong shock wave fronts, propagating faster than the ambient speed of sound, can arise
in liquids and gases [1–14]. A similar situation occurs with strong shock wave fronts in
nonlinear solids, where the discontinuities in the same field variables may arise when faster
parts of a wave start to overtake slower ones [15–19]. It should also be noted that there
are very few experimental studies on the formation and propagation of strong shocks in
hyperelastic solids, highlighting the urgent need for further investigation.

It is known that in the case of strong shock wave fronts in solids, the shock wave
velocity V for an elastic acoustic wave takes an intermediate value between phase velocities
on either sides of the surface of discontinuity [20–22]:

V ∈ (c−; c+), (1)

where
c− = lim

x→x0−0n0
c(x); c+ = lim

x→x0+0n0
c(x). (2)

Herein, x0 belongs to the shock wave front; c is the phase velocity; n0 is the unit normal
to the shock wave front at x0; and limits in Equation (2) are taken along non-tangential
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directions to the shock wave front. Applying Hadamard’s compatibility condition [23], the
propagation velocity V of the shock wave can be found by the following equation:

V =
[c]

[F · ·n ⊗ n]
, (3)

where F is the deformation gradient; the square brackets denote a jump in the non-
tangential limits for the corresponding field variables approaching a point on the shock
wave front, e.g.,

[c] = c+ − c−. (4)

Thus, if c− = c+ and, hence, [c] = 0, then V = 0. Most of the work on shock waves in
solids relates to nonlinear P-waves in isotropic hyperelastic solids [24–32] or elastic–plastic
P-waves [33–37].

In a number of works the shock wave fronts formed by the propagation of nonlinear
shear waves polarised orthogonally to the direction of propagation are concerned [38–41].
Shear shocks can be generated by even weak shear waves due to relatively small shear
moduli and significantly large nonlinearity at shear deformation [42]. Most of the works on
nonlinear shear waves and shear shocks relate to incompressible solids. The assumption of
incompressibility corresponds to the known experimental facts on various artificial and
natural organic materials [43,44] and simplifies the governing equations [45,46].

Meanwhile, quite a large number of soft polymer foams, including aerogels, ex-
hibit high compressibility [47–49]. Moreover, some aerogels may have auxetic properties
associated with negative Poisson’s ratio [50] and can demonstrate negative compressibil-
ity [51–55]. To account high compressibility of foam materials a special class of hyperelastic
potentials, known as hyperfoams, was developed [56–61]. As was mentioned by [59], these
potentials ascend to a less common hyperelastic potential introduced in [62] and a family
of Hill’s potentials [63,64].

Another remark concerns the principal difference between shear shock waves and
vortex sheets in solids [23]. The propagation velocity of a shear wave is discontinuous at
the shear shock wave front according to Equations (1)–(4) and for a shear shock wave front.

[c]− ([c · n])n = 0, (5)

where n is the unit normal to the shock wave front, the propagation velocity of the vortex
sheet is necessarily orthogonal to the vortex sheet.

c · n = 0. (6)

Moreover, the propagation velocity is necessary continuously [23,65,66].

1.2. Current Research

The current research is aimed at analysing the formation and propagation of shock
waves generated by excitation of a shear wave in a hyperelastic medium satisfying one of
Hill’s hyperelastic potentials (hyperfoams), which is suited for modelling highly compress-
ible foams. It will be shown below that the occurrence of shear shock waves accompanying
the propagation of a wave with a smooth wave front leads to (i) the appearance of dis-
continuities in strain, stress, and propagation velocity; (ii) a gradual decrease in both
displacement and strain magnitudes with distance from the excitation plane; (iii) a gradual
decrease in both strain-specific energy and kinetic-specific energy with distance; and (iv) the
release of heat caused by the corresponding decrease in mechanical energy. Thus, due to
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these observations, compressible foams modelled by the Hill hyperelastic potential can be
used as shear wave absorbers, working without viscous or dry friction dampers.

The analysis is based on constructing the nonlinear equation of motion for a (pure)
shear wave, applying the equation of energy balance at the shock wave front, and per-
forming computations by the finite element (FE) method for spatial discretisation coupled
with the explicit energy preserving predictor–corrector finite difference (FD) Lax–Wendroff
method [67,68].

2. Principal Equations
2.1. Pure Shear
2.1.1. Displacement Field

The displacement field corresponding to a plane shear wave can be represented in the
following form [69,70]:

u(x, t) = m f (x, t)), (7)

where u is the displacement field; x = x · n is the scalar variable varying along wave vector;
t is the time; m is a vector defining the polarisation of the wave; it is assumed that m · n = 0;
c is the propagation velocity; and f is a scalar-valued wave function. In the following
analysis, f is assumed continuously differentiable in x and t variables. The quantity

γ = 2−1∂x f (8)

is known as the amount of (pure) shear or nominal shear [66].

2.1.2. Deformation Gradient

Consider the deformation gradient F related to pure shear [23,66]:

F = I + γ(m ⊗ n + n ⊗ m), (9)

where I is the unit tensor. It is assumed that γ < 1, which ensures the non-degeneracy of
tensor F. Applying the Jordan normal form decomposition to the deformation gradient
(9) yields

F = QF · DF · Qt
F, (10)

where the superscript denotes the transposition; QF is orthogonal, and DF is diagonal:

QF =


1√
2

− 1√
2

0
1√
2

1√
2

0

0 1

; DF =
3

∑
k=1

λkek ⊗ ek. (11)

Herein, ek are the mutually orthogonal vectors, associated with vectors m and n
through the following relations:

e1 =
m + n√

2
; e2 =

m − n√
2

; e3 = m × n. (12)

Eigenvalues λk in Equation (11) are known as the principal stretches, and they are
connected to the nominal shear by the following relations:

λ1 = 1 + γ; λ2 = 1 − γ; λ3 = 1. (13)
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In view of Equation (9), the principal invariants of tensor F become

I1F ≡ I · ·F = 3; I2F ≡ 1
2

(
(I · ·F)2 − I · ·(F · F)

)
= 3−γ2; J ≡ detF = 1−γ2. (14)

The change in volume J under pure shear is known as the Kelvin effect [66]. Another
important remark concerns the compressibility condition stemming from Equations (9)
and (13); the account of compressibility is essential for modelling hyperfoams that exhibit
extremely high compressibility across the entire range of admissible stretches.

2.1.3. Left Cauchy–Green Deformation Tensor

For the following analysis introduce the left Cauchy–Green deformation tensor [66].

B ≡ F · Ft = I+γ2(m ⊗ m + n ⊗ n) + 2γ(m ⊗ n + n ⊗ m) =

1 + γ2 2γ 0
2γ 1 + γ2 0
0 0 1

, (15)

which similarly to Equation (10) can be decomposed into Jordan normal form

B = QB · DB · Qt
B, (16)

where

QB = QF; DB =
3

∑
k=1

λ2
kek ⊗ ek. (17)

In view of Equations (13) and (17), the corresponding invariants of tensor B become

I1B = 2γ2 + 3; I2B = 3 + γ4; I3B = (1 − γ2)
2
. (18)

2.2. Ogden–Hill Compressible Hyperelastic Potential

Consider the Ogden–Hill compressible potential, one of the most general forms of
which is as follows [64]:

W(λ1, λ2, λ3) =
M

∑
m=1

Cm

|αm|

((
3

∑
k=1

λαm
k

)
− 3 +

1
|β|

(
J−αmβ − 1

))
, (19)

where M is the positive integer; Cm are dimensional coefficients, associated with elastic
moduli; and αm, β are some real numbers. Following [59], consider a specific form of
potential (19), with M = 1, α1 = −2, β = 1

2 , which is well suited for modelling
compressible foams [25,71].

W(λ1, λ2, λ3) =
µ0
4

((
3

∑
k=1

λ−2
k

)
+ 2J − 5

)
, (20)

where µ0 > 0 has the meaning of the (initial) shear modulus at small γ → 0 . In [59,62,64],
the parameter β is suggested to be taken as

β =
ν

1 − 2ν
, (21)

where ν is the Poisson’s ratio, assumed to be independent of stretches λk. However,
in [56,57], no restrictions were imposed.
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2.3. Principal Stresses

The Cauchy stress tensor can be defined by the following equation [66]:

σ(λ) = 2J−1 ∂W
∂B

· B. (22)

Tensor σ can be written in terms of its principal stresses ([70], Equation 4.3.44):

σ(λ) =
3

∑
m=1

σm(λ)em ⊗ em = J−1

(
3

∑
m=1

(
λm

∂W
∂λm

)
em ⊗ em

)
, (23)

In view of Equation (20), the principal stresses become

σ1(γ) =
µ0γ

(
2 − 2γ2 − γ3)

2(1 + γ)3(1 − γ)
; σ2(γ) =

−µ0γ
(
2 − 2γ2 + γ3)

2(1 − γ)3(1 + γ)
; σ3(γ) =

−µ0γ
2

2(1 − γ2)
. (24)

Introducing Cauchy shear stress (τ) [66] acting on planes with unit normal m and n,
we arrive at

τ = 2−1µ0γ
(

1 − γ2
)−3

(m ⊗ n + n ⊗ m). (25)

For infinitesimal shear strain, Equation (24) gives the following expressions for the
principal components, written up to o(γ):

σ1(γ) = µ0γ; σ2(γ) = −µ0γ; σ3(γ) = 0; τ(γ) = µ0γ. (26)

2.4. Tangent Modulus and Shear Wave Velocity

Differentiating Equation (25) with respect to γ yields the tangent shear modulus:

µ(γ) = µ0
1 + 5γ2

(1 + γ)4(1 − γ)4 . (27)

Now, taking into account Equation (14) and the relation for the material density [70]:

ρ(γ) ≡ ρ0
J

=
ρ0

1 − γ2 , (28)

the propagation velocity for the considered nonlinear shear wave becomes

cS(γ) ≡

√
µ(γ)

ρ(γ)
= cS0

√
(1 + 5γ2)(1 − γ2)

(1 − γ2)2 , (29)

where cS0 is the initial shear wave velocity at γ → 0 :

cS0 =

√
µ0
ρ0

. (30)

2.5. Equation of Motion

The nonlinear hyperbolic equation of motion for the considered plane wave (7) can be
written in the following form [66]:

∂x(τ(γ) · n) = ρ(γ)m∂2
tt f (x, t)). (31)

In view of Equations (8) and (25), the equation becomes

µ0(1 + 5γ2)

2(1 − γ2)
4 ∂2

xx f (x, t) = ρ(γ)∂2
tt f (x, t), (32)
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from where noting expressions (28) and (29), we arrive at

c2
S0

(
2 + 5(∂x f (x, t))2

)
(

2 − (∂x f (x, t))2
)3 ∂2

xx f (x, t) = ∂2
tt f (x, t). (33)

Equation (33) is the desired nonlinear hyperbolic secular equation.

2.6. Initial and Boundary Conditions

Consider a plane wave generated by a triangle-type excitation at x = 0

f (x, t)|x=0 = f0 ×


0, t ≤ 0
t, 0 < t ≤ T/2
T − t, T/2 < t ≤ T
0, t > T

, (34)

where f0 is the complex magnitude; T is the triangle base; thus

supp( f (x, t)|x=0) = (0; T). (35)

The Sommerfeld attenuation condition is imposed at x → ∞ [72]:

∀t : lim
x→∞

f (x, t) = 0; lim
x→∞

∂x f (x, t) = 0. (36)

Equation (36) ensures the absence of non-decaying solutions at infinity. Conditions
(34) and (36) should be supplemented by the initial conditions:

∀x : f (x, t)|t=0 = 0; ∂t f (x, t)|t=0 = 0. (37)

2.7. Equations of Energy Balance

Following [20,73], the equation of energy balance can be written in the following form:

t∫
0

F(τ)dτ = Ek + Es + Q, (38)

where F is the energy flux caused by the applied excitation at x = 0; Q is the heat release:

Q ≡
t∫

0

∞∫
0

q(x, τ)dxdτ, (39)

q is the specific heat; Ek and Es are kinetic and strain energy, respectively,

Ek =
1
2

t∫
0

∞∫
0

ρ(λ(x, τ))(∂τu(x, τ))2dxdτ; Es =

t∫
0

∞∫
0

W(λ(x, τ))dxdτ. (40)

Following [20,65,66], Equations (38) and (39) for heat release should be accomplished
by the equation of entropy production:

TdS ≥ dQ,

where T is the temperature, and S is the entropy. This inequality is essential for capturing
the dependence of physical properties on temperature. However, in the present analysis, it
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is assumed that the considered shock waves are isentropic everywhere except at the wave
front; see [20,65] for the conditions governing isentropic shock waves.

When a shock wave appears, Equation (38) requires an additional equation stating the
energy balance at the discontinuity [23,65]:

ρ0V[W] +
1
2
ρ0V

[
c2

S

]
= −[τcS] + [Q], (41)

where the square brackets denote the jump at the discontinuity; and V is the velocity of the
moving shock wave.

2.8. Numerical Modelling

To numerically solve the nonlinear hyperbolic Equation (33) with boundary and initial
conditions (34)–(37), and with an account of equations for the energy balance (38), (41),
the FE method for spatial discretisation is used combined with the finite difference (FD)
approach for integration in the time domain. The explicit Lax–Wendroff energy preserving
predictor–corrector numerical scheme is used in the time domain [67] with the Courant–
Friedrichs–Lewi (CFL) condition imposed on the time increment.

∆t < ∆tCFL ≡ min(∆x)
max
γ

cS(γ)
, (42)

where ∆t is the time increment; ∆tCFL is the upper bound for the known for the stable time
increment, known as the CFL increment; and ∆x is the diameter of spatial mesh element.
Condition (42) ensures the achievement of numerically stable solutions [74].

The applied Lax–Wendroff two step predictor–corrector FD scheme can be written
as [67,68]

f
(

xj+1; tn+1/2
)
= 1

2
(

f
(
xj+1; tn

)
+ f

(
xj; tn

))
−

∆t
2∆x
(

H
(

f
(
xj+1; tn

))
− H

(
f
(
xj; tn

))) , (43)

where xj is the spatial node; tn is the node in the time domain; and H is the nonlinear
function associated with the left-hand side of Equation (33):

H( f (x, t)) = c2
S0

(
2 + 5(∂x f (x, t))2

)
(

2 − (∂x f (x, t))2
)3 . (44)

To reduce non-physical oscillations, the median filter was applied to the obtained
strain and stress fields:

g∗(ti) =
1

2m + 1

(
m

∑
k=0

g(ti±k)

)
, (45)

where 2m + 1 is the filter order, and the asterisk denotes the filtered function. According to
empirical estimates median filters of orders 7 ÷ 15 provide reasonable smoothness while
preserving shock-related discontinuities.

3. Numerical Analysis
3.1. The Model

Consider a plane strain model with a shear displacement field (34) acting at the bottom
of the model with vertical non-reflecting PML boundaries [75,76]; see Figure 1.
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Figure 1. Plane model for analysing propagation of nonlinear S-wave; asterisks denote points of
observation.

The number of plane quadrilateral elements with reduced integration varied in the
range N ∈ [∼10K; ∼1200K]. The mesh convergence test revealed that at N ≥ 800K, the
results were visually almost indistinguishable; thus, N ≈ 800K was taken for further
analysis, yielding ∆tCFL ≈ 5 × 10−3 s. The initial pulse duration in Equation (34) was taken
to satisfy the empirical estimate, ensuring small non-physical oscillations at the back wave
fronts [77].

T > 25 × ∆t (46)

where ∆t is the time increment from the CFL condition (42). In view of condition (46)
and the obtained estimate for ∆tCFL, the upper bound becomes T > 0.125 s. Instead of
imposing the Sommerfeld attenuation condition (36) at x → ∞ , the points of observation
were chosen in such a way as to ensure the absence of reflected waves from the right end of
the rod.

3.2. Shear Waves and Shear Shocks

The plots for shear strain and the corresponding shear vs. time at different points of
observation are shown in Figure 2.

 
(a)  (b) 

Figure 2. Arrivals of pulses at different points of observation: (a) shear strain; (b) Cauchy shear stress;
straight lines correspond to shock wave fronts at ρ0 = µ0 = 1.
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The plots in Figure 2 reveal (i) the decay of the amplitudes of both the Cauchy shear
stress and the nominal shear strain with distance from the applied source; (ii) the appear-
ance of discontinuities (shock wave fronts) in both strain and stress; and (iii) the decrease
in the propagation velocity behind the shock wave front resulting in pulse spreading.

The strain and kinetic energy variation with time for the whole model, along with
the heat release, is plotted in Figure 3, revealing (i) both strain and kinetic energy decay
with time while the shear pulse propagates, which is caused by the decreased strain and
stress magnitudes with distance from the source; (ii) at the same time, heat is released
to compensate for the decrease in mechanical energy; and (iii) a discrepancy between
strain and kinetic energy can be observed, indicating the nonlinear nature of the travelling
wave [65].

Figure 3. Energy variation vs. time.

And, finally, the variations in the tangent shear modulus (27) and shear wave velocity
(29) with shear strain are plotted in Figure 4.

 
(a)  (b) 

Figure 4. (a) Shear tangent modulus vs. strain; (b) shear wave velocity vs. strain.

The plots in Figure 4 are plotted in terms of the corresponding dimensionless quantities
marked with an asterisk.

µ∗ =
µ

µ0
; c∗S =

cS
cS0

. (47)

Both tangent modulus and shear wave velocity vary exponentially vs. shear strain.
The plots for shear wave velocity in Figure 4b and for strain variation with time in Figure 2a
imply the appearance of discontinuity [c] in shear wave velocity.
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4. Concluding Remarks
The performed analysis applied to the propagation of a triangle pulse in a compressible

foam, modelled by the Ogden–Hill potential (20), reveals the following:

(i) The appearance of discontinuities (shocks) in both strain and stress (Figure 2); the
observed shocks are caused by the overtaking of slower moving parts of the delta-like
pulse by faster ones.

(ii) The decrease in strain and stress magnitudes of the propagating pulse with distance
from the excitation source (Figure 2).

(iii) Spreading out the pulse over distance caused by spatial dispersion (Figure 2).
(iv) The decrease in both kinetic and strain energy with a simultaneous increase in thermal

energy (Figure 3), which is caused by the formation and propagation of shocks [20,66]
(v) The appearance of a discrepancy between strain and kinetic energy (Figure 4), which

is caused by the physical nonlinearity of the considered medium [65,73].

These observed phenomena can have a wide range of possible applications: from
the creation of microvibration isolators in microelectromechanical systems (MEMS) [78]
to more substantial vibration isolators in the automotive and aerospace industries [79];
in all these cases, the vibration isolators do not contain viscous or dry friction dampers,
due to the dissipation of mechanical energy in a hyperelastic material, modelled by the
considered Ogden–Hill potential. It is also worth noting that shock waves, which are, in
fact, propagating discontinuities in solid media, differ significantly from elastic waves.
While elastic waves propagating in a lossless elastic or hyperelastic medium do not cause
attenuation of mechanical energy, shock waves necessarily lead to energy attenuation
accompanied by corresponding heat release [65,66].

A final remark concerns the triangle pulses considered in (34), which generated strong
shocks when a slower-moving positive pulse was overtaken by a faster negative pulse.
It can be shown that the specific shape of the pulses is not critical for shock formation;
sinusoidal pulses, for example, could also be used instead of triangular ones. Thus, it can
be anticipated that the pulse shape has little influence on the occurrence of shock formation.
In this context, see [18,28], where sinusoidal pulses were shown to generate shocks in
bi-modular media.
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