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Abstract—Perspective types of seismic barriers used to protect buildings and structures from the influ-
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1. INTRODUCTION
Seismic barriers are designed to protect buildings and structures from seismic surface waves of various

etiologies, including Rayleigh waves, Rayleigh – Lamb waves (waves propagating in a layered half-space),
Love waves, as well as head SP waves. The latter are a very dangerous type of seismic waves arising from
short-focus earthquakes and underground explosions [1–5]. In this article, vertical seismic barriers that
contain both special scattering elements and metamaterials with increased dissipation of wave energy are
considered.

Below we give an overview of the main types of seismic waves that require vertical seismic barriers to
allow protection.

1.1. Rayleigh Waves.

Rayleigh waves are the most common and well-studied type of surface waves arising in a homogeneous
elastic half-space. These waves are characterized by (i) frequency-independent propagation speed (no dis-
persion); (ii) exponential decay of the amplitudes of displacements in depth and localization of wave
energy in a relatively narrow surface layer, which allows these waves to propagate over much greater dis-
tances, compared to bulk waves [6, 7]; and (iii) the ratio between the displacement components, at which
the vertical component of the wave is approximately one and a half times larger than the horizontal one
[7]. The latter circumstance makes this type of waves especially dangerous for extended structures. The
features associated with the localization of the energy of these waves in the near-surface layer of the earth’s
crust lead to the fact that Rayleigh waves can bend around the earth several times, see Fig. 1, which shows
a seismogram of the arrival of Rayleigh waves that circled the globe eight times [8].

In the recent past, the homogeneous half-space model has been widely used to study wave processes
during earthquakes and underground explosions; see [9], where it is noted that Rayleigh waves can also
arise during deep-focus earthquakes. In addition, these waves are generated by moving rail and road vehi-
cles [10, 11]. At present, in geophysical and geotechnical applications, the homogeneous half-space model
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is replaced by the models of layered or functionally gradient half-spaces, in which the propagation of
Rayleigh – Lamb dispersive waves is considered [12].

1.2. Rayleigh – Lamb Waves.

The next type of seismic waves is Rayleigh – Lamb waves, which propagate in a layered half-space.
A distinctive feature of such waves is dispersion, i.e. the dependence of the speed on frequency, if we con-
sider the Rayleigh – Lamb harmonic waves, Fig. 2.

Despite the very complex dispersion pattern shown in Fig. 2, from the point of view of seismic effects
from earthquakes on structures, the so-called second limiting phase velocity, defined as the following
limit, is of great interest

(1.1)

where c is the phase velocity and  is the angular frequency. In layered systems, the velocity  is deter-
mined either by various low-frequency asymptotic methods [13–15], or by direct calculation using the
limiting formula (1.1).
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Fig. 1. Seismogram of the Rayleigh wave arrival at the CMB station, Berkeley Digital Seismic Network (BDSN), obser-
vation time ~14 h [8]
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Fig. 2. Dispersion curves for Rayleigh – Lamb waves in a multilayer half-space: horizontal axis – phase velocity; vertical
axis – circular frequency
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1.3. Love Waves.

Like the Rayleigh – Lamb waves, Love waves are dispersive waves propagating in an elastic half-space
system and an elastic layer (or several layers) in contact with it. Love waves are horizontally transversely
polarized and decay exponentially with depth.

From the point of view of seismology, Love waves are mainly of interest in connection with small-
amplitude microseisms generated by waves in the ocean [19, 20]. At the same time, during strong earth-
quakes, the amplitudes of Love waves do not reach the values characteristic of bulk S waves and Rayleigh –
Lamb waves [21, 22]. Nevertheless, vertical seismic barriers can also be used to protect against Love waves
[23, 24].

1.4. Head SP Waves.

The head SP waves propagate parallel to the free surface of the half-space with the speed of P waves
and arise at some distance from the epicenter of a short-focus earthquake or underground explosion, Fig. 3.
This distance depends on the source depth h and the physical properties of the medium [25–27], and

(1.2)

where  and  are the velocities of transverse and longitudinal body waves, respectively.

In fig. 3 wave S1 falls on the free surface, forming reflected waves: transversal (SS1) and longitudinal
(SP1), in a similar way, wave S2 falls on the free surface, forming reflected waves (SS2) and longitudinal
(SP2), the latter moves parallel to the free surface by forming a head wave. The angle at which the S2 wave
falls is called the critical angle, it is determined by the following expression [27]:

(1.3)
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Fig. 3. Schemes of head waves occurrence: a) half-space; b) part of a spherical surface; S1 and S2 are shear waves diverging
from the hypocenter of an earthquake or underground explosion, SP2 is (true) head wave; in fig. 2b wave SP1 is quasi
head
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Since head or quasi-head waves can carry significant energy and lead to catastrophic destruction [1, 2], ver-
tical seismic barriers, similar to those used to protect against Rayleigh – Lamb waves, are required to pro-
tect against these waves.

1.5. Frequency Ranges.
For the design of seismic protection systems against the types of seismic waves under consideration,

rough estimates of the frequency range in which a significant proportion of seismic energy is localized are
required.

According to estimates [28–31], during natural earthquakes, the most dangerous for most buildings
and structures, including nuclear power facilities, are frequencies of 2–33 Hz with energy peaks in the
region of 5–7 Hz and 30–33 Hz, Fig. 4.

Artificial earthquakes caused by underground explosions are usually distinguished by higher frequen-
cies [32, 33]. For example, according to [32], frequencies up to 250 Hz are recorded at close distances from
the epicenter (limited by the resolution of accelerometers). With increasing distance, high frequencies
attenuate and individual bursts are detected at frequencies up to 40 Hz; the maximum amplitudes are
recorded at a frequency of ~25 Hz.

1.6. Propagation Velocities of Seismic Waves in the Upper Parts of the Earth’s Crust.
To select the geometric and physical parameters of seismic barriers, in addition to the frequency of

seismic waves, knowledge of the propagation velocities of bulk and Rayleigh waves is required. According
to numerous experimental studies [34–36], the propagation velocities of seismic waves in the upper parts
of the earth’s crust have the following values, see Table 1.

The propagation velocity of a Rayleigh wave can be determined either as a root of the Rayleigh equa-
tion, or by one of the approximate formulas [37, 38], while Poisson’s ratio is determined from the corre-
sponding velocities of bulk waves:
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Fig. 4. Fourier amplitude spectrum (FAS), Gebze-Arçelik station, aftershock of the Düzce earthquake (Turkey)
11.11.1999 [29]
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Table 1. Velocities of propagation of bulk waves in the rocks of the earth’s crust

Rocks P wave speed, m/s S wave speed, m/s

Fluvial 1400 200
Alluvial 1500 250
Moraines 2000 700
Root breeds 4000 2500
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1.7. Mathematical Models for the Study of Vertical Barriers.
Usually, for modeling seismic barriers, either plane finite element models are used. They are associated

with the numerical solution of the external Lamb problem, in which it is possible to obtain the necessary
Rayleigh wave, Fig. 5a, [23, 39, 40]; or consider the solution of a more complex internal Lamb problem,
in which, along with the Rayleigh wave, it is possible to simulate the propagation of the head SP wave, see
Fig. 5b [27].

Due to the higher requirements for computational resources, spatial models are used much less fre-
quently to solve the Lamb problem with a barrier, see [41]. In the case when it is necessary to take into
account the elastic anisotropy of a half-plane or half-space, the methods of boundary integral equations
can be used to solve the Lamb problems with the construction of the corresponding fundamental solutions
[42–44].

1.8. Equations of State for Describing Dynamic Deformation of Granular Metamaterials.
To describe the behavior of granular metamaterials under the action of dynamic loads, the equations

of the bimodular theory of elasticity during deformation in the elastic zone are usually used [45–47]

(1.5)

where  is the stress tensor,  is the strain tensor;  is the scalar hyperelastic potential; , ,  are the
corresponding invariants of the deformation tensor, and the multi-modularity can be taken into account
by a potential of the form

(1.6)

where , ,  are the elastic constants independent of tensor invariants of deformations. Waves in nonlin-
ear media that are described by potentials of the form (1.6) were studied in [47, 48].

In the case when the deviatorial components of the stress tensor reach the plasticity surface, the equa-
tions of plastic f low are used, and along with the Mohr – Coulomb and Drucker – Prager models, critical
state models are used, for example, the cam-clay model [49–51], see also [52] on metamaterials with the
properties of phonon crystals. From the point of view of seismic protection from the surface waves under
consideration, metasurfaces are of considerable interest [53].

2. DESIGN MODELS
Disappointingly, for most problems in wave mechanics, there is no possibility of obtaining exact ana-

lytical solutions of the equations describing the behavior of the system. Exact analytical solutions are
known only for a narrow range of problems with extremely simple geometry (see, for example, [54] for an
almost exhaustive list of available solutions). Such solutions, as a rule, are not applicable to the analysis of
real problems, but can be used to validate and assess the accuracy of the developed numerical models.
In most cases, the problem posed can be solved only numerically using approximate methods for solving
the resulting systems of differential equations (see, for example, [55]).

Using the numerical method, we solve the problem of the interaction of an incident dynamic wave in
an elastic half-plane with an inclusion representing a vertical seismic barrier (see Fig. 5). We evaluate the
effectiveness of one type or another of seismic barriers (Fig. 6b and 6c) by decreasing the amplitudes of
displacements and accelerations at points of the surface behind the seismic barrier in comparison with the
solution of a similar problem for a half-plane without a seismic barrier (Fig. 6, a).
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Fig. 5. (a) External and (b) Internal Lamb Problems with Vertical Barriers
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Different combinations of elastic properties of the seismic barrier and the metastructures located on
the barrier and different geometries of the metastructures are considered.

2.1 Model Problem of the Propagation of an Elastic Wave in an Elastic Half-Plane.
We solve the problem posed numerically using the finite element method. The solutions is obtained

using the commercial package ANSYS [57]. At the first stage, we solve the problem of wave propagation
in an elastic half-space (Fig. 6a). The wave is excited by a disturbance applied to the surface at a certain
distance from the point at which we measure the arising amplitudes of displacements and accelerations.
The profile of the dependence of the intensity of the acting force on time is shown in Fig. 7.

On the surface, at some distance from the point of application of the force, we obtain the time depen-
dences of displacements and accelerations along both axes. For this simple problem, the solution can be
obtained analytically by calculating the convolution of the solution for the function in time and space and
the force applied on the surface (Fig. 7). Such a problem is usually called the two-dimensional exterior
Lamb problem, and its analytical solution is known (see, for example, [58]). To validate the obtained
numerical solution, let us compare the obtained dependences for displacements with those calculated
analytically. Fig. 8 shows the resulting time profile of the displacement for the vertical coordinate, calcu-
lated numerically, compared with the analytical exact solution. As can be seen from the presented graphs,
the numerical solution reproduces the exact analytical solution quite well. Thus, we can draw a conclusion
about the applicability and sufficient accuracy of the obtained numerical solution for solving the studied
class of problems.

Further, we obtain the maximum (in time) amplitudes of displacements and accelerations in both
directions. Further, these values will be used for normalization when determining the protective coeffi-
cient of various types of barriers and protective metastructures. For the used exposure parameters (dura-
tion is 450 microseconds, maximum amplitude is 1000 N) and the properties of the medium, taken equal

Fig. 6. (a) Elastic half-space without a protective barrier, (b) Elastic half-space with a protective barrier, and (c) Elastic
half-space with a barrier with metastructures

(a) (b) (c)

Fig. 7. Time profile of the amplitude of the concentrated force acting on the boundary of the half-plane
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to those typical for the soil (Young’s modulus is E = 10 MPa, Poisson’s ratio is Nu = 0.35, density is
2000 kg/m3), the obtained maximum values of the amplitude of displacements and accelerations in two
directions are presented in Table 2.

Next, we use these amplitudes to normalize and determine the protection factor for various types of
barriers.

In addition, we investigate the dependence of the maximum amplitude of the arising displacements
and accelerations on the distance from the point of application of the load. Such estimates can be carried
out both analytically, using an exact solution, and using the developed numerical finite element model.
Fig. 9 shows the dependence of the maximum amplitude of the arising horizontal displacements under
conditions of the problem being solved.

As can be seen from the data presented in Fig. 9, the numerical solution well repeats the exact analytical
solution, which once again indicates the applicability of the developed model for the analysis of the class
of problems being solved. In addition, the obtained dependences of the maximum amplitudes of displace-
ments and accelerations will be further used to analyze the so-called “shadow zones” – areas behind protec-
tive barriers, in which a significant decrease in displacements and accelerations caused by incident waves of
a seismic nature is ensured. The linear size of the “shadow zone” provided by any kind of barrier, along with
the protection factor, is one of the most important characteristics of a protective seismic barrier.

Also, based on the analysis of the dependences of the maximum amplitudes of displacements and
accelerations on the distance from the point of application of the load, it is possible to estimate the size of
the region near the point of application of the load, in which the influence of bulk waves is important.

2.2. More and Less Rigid Barrier.
Further, a similar problem was solved for protective seismic barriers (Fig. 6b) made of two materials,

one of which is much more rigid than another one: first material: 1 case – Young’s modulus is 10 times
greater, the density is 5 times greater; 2 case – Young’s modulus is 100 times greater, the density is higher
50 times; second material: 1 case – Young’s modulus is 10 times less, the density is 5 times less. 2 case –
Young’s modulus is 100 times less, the density is 50 times less. For case 1, the typical protection factors of
the barriers (the ratio of the maximum displacement/acceleration value in the absence of a barrier to the
same value when using a barrier) for the selected case are 1.5–3.0 for accelerations and about the same for
displacements. In case 2, the typical protection factors of the barriers for the selected case are 10–25 for
accelerations and 1.5–3.0 for movements.

2.3. Metastructure Barriers.
Further, the problem was solved for protective seismic barriers with integrated metastructures (Fig. 6c).

Various combinations of elastic properties of barriers and metastructures were considered. In addition, the

Fig. 8. Temporary displacement profile for the vertical coordinate. Comparison of numerical (gray line) and exact ana-
lytical solution (black line)
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influence of the number and size of the components of metastructures on the provided protection factors
was investigated.

As shown by the calculations, in some cases the use of metastructures integrated into the protective
seismic barrier can significantly increase the protection factor. In particular, for some cases (for example,
a softer (with respect to the medium) barrier with more rigid (with respect to the medium) metastruc-
tures), the magnitude reduction factors can reach 30. In other words, with such a configuration of the load
and protective barrier, displacement and accelerations in the protected area decrease 30 times. At the same
time, some combinations of barrier properties and protective metastructures do not increase the coeffi-
cient of protection compared to a barrier without metastructures, or even slightly decrease it. It can be
concluded that for specific cases of the properties of the material of the medium, the possible properties
and dimensions of the protective barrier and metastructures, it is necessary to carry out additional analysis
in order to identify the most effective combinations of the protective barrier for a specific case of possible
effects of a seismic nature.

3. CONCLUSION
It has been established by theoretical and numerical studies that, within the framework of the consid-

ered elastic models, using vertical seismic barriers in the form of metastructures, it is possible to signifi-
cantly reduce the magnitude values of oscillations in the protected zone, in comparison with monogenic
rectangular barriers, and the level of vibration reduction in the shadow zones behind the barrier turns out
to be significantly larger.

In addition, the studies carried out indicate a significant increase in the length of the shadow zone,
which opens up prospects for the use of metastructural seismic barriers to protect extended objects, for
example, runways of airfields, bridges, aqueducts, etc.

Table 2. Velocities of propagation of bulk waves in the rocks of the earth’s crust
Maximum acceleration value along the horizontal axis 72.3 m/s2

The minimum value of the acceleration along the horizontal axis –43.9 m/s2

Maximum acceleration value along the vertical axis 110.7 m/s2

Minimum acceleration value along the vertical axis –104.7 m/s2

Maximum displacement value along the horizontal axis 4.70E-07 m
Minimum value of movement along the horizontal axis –1.40E-07 m
Maximum value of movement along the vertical axis 1.20E-07 m
Minimum value of movement along the vertical axis –7.50E-07 m

Fig. 9. Dependence of the maximum amplitude of horizontal displacements arising on the surface of the half-plane on
the distance from the point of load application. Comparison of numerical (gray line) and exact analytical solution (black
line)
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