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Abstract. The paper briefly reviews progress in numerical simulations of dynamic crack 
propagation and fracture of initially intact media and presents examples of simulations 
utilizing finite element method with embedded dynamic fracture criterion based on the 
concept of incubation time of brittle fracture introduced by Petrov and Morozov. The 
examples include dynamic fracture initiation, propagation arrest, and evolution of fracture 
zones in initially intact media. It is demonstrated that this approach is capable to give an 
accurate description of all the variety of phenomena associated with dynamic fracture. An 
important feature of the approach, distinguishing it from the majority of other dynamic 
fracture criteria is the necessity to introduce but one additional material parameter, easily 
evaluated experimentally, in order to predict dynamic fracture. 
Keywords: FEM, dynamics, fracture, incubation time, crack velocity, crack arrest, 
quasibrittle fracture, erosion 
 
 
1. Introduction 
First experimental results in dynamic fracture are dating back to the beginning of the 
20th century (see ex. [1-4]). The interest in the area was primarily driven by military 
applications – i.e., the development of protection systems to protect humans and structures 
against high-energy impacts and the development of new weapons to penetrate this 
protection. First theoretical results for cracks propagating with velocities comparable to that 
of the Rayleigh wave appeared in the middle of the 20th century ([5-7]) along with the 
progress in linear elastic fracture mechanics (LEFM). 
 Later on, in the 1970s and 1980s experimental dynamic fracture mechanics got 
additional attention due to new emerging applications in such areas as high-speed 
transportation systems, aerospace applications, micromechanics, nuclear safety, etc. and the 
appearance of accurate high temporal resolution experimental techniques that made it possible 
to capture the evolution of fracture on micro- and nano-second time scale (see ex. [8-18]). 
Most of the analytical solutions for dynamic crack propagation known to date had also 
appeared at about the same time [19-27,35].  
 Despite the significant interest caused by very important and topical applications, long 
history of investigations, and certain progress in the area, to the moment there is no generally 
accepted approach for simulation of dynamic fracture initiation and evolution in quasibrittle 
materials. The difficulties are primarily caused by complicated and expensive experiments 
requiring very precise loading techniques and extremely sensitive high temporal resolution 
equipment for registration of dynamic fracture evolution. 
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2. Fracture criterion 
The central difficulty associated with analytical and numerical simulations of dynamic crack 
propagation is the choice of criterion for crack initiation, propagation, and arrest. In early 
attempts, authors were trying to utilize the critical stress intensity factor criterion, which was 
extremely successful for the prediction of fracture onset in quasistatic conditions. Very soon 
numerous experimental results (see ex. [12,15,16]) explicitly demonstrated that stress 
intensity factor, controlling the stress field surrounding the crack tip, at the instant of crack 
initiation is extremely unstable. It was observed that for the same quasibrittle material, the 
dynamic critical stress intensity factor (the value of stress intensity factor at the instant of 
fracture onset) can take a rather arbitrary value depending on experimental conditions. This 
value can both exceed and be smaller than the critical stress intensity factor value typical for 
quasistatic conditions.  
 Following attempts, originating from the works of Freund [19-21] and later developed 
by Rosakis were based on an assumption that dynamic critical stress intensity factor can be 
defined as a function of stress intensity rate. Though this approach can be applied for the 
prediction of fracture initiation for some materials (usually displaying a well-developed 
plastic zone at the tip of a crack) in a rather limited range of experimental conditions, new 
experimental results (see ex. [28]) had shown that dynamic critical stress intensity factor 
cannot be treated as a fractured material property, being strongly dependent on experimental 
geometry and loading conditions. Moreover, multiple publications (ex. [16]) clearly 
demonstrated that in some cases fracture at the crack tip can be initiated at the instant when 
the stress intensity factor rate is negative (also see discussion in [29]). Obviously, the 
abovementioned experimental results testify inapplicability of the rate-dependent critical 
dynamic stress intensity factor criterion to serve as a universal crack initiation or propagation 
criterion.  
 Another criterion, that can be utilized to determine critical conditions leading to crack 
initiation and arrest was proposed by Petrov and Morozov [29,30]. The criterion is based on 
the concept of incubation time of essentially transient process of brittle fracture. As 
demonstrated in multiple publications (ex. [31-34,36,37]), this approach can successfully 
predict all the variety of experimentally observed phenomena associated with the dynamic 
fracture of quasibrittle media. The incubation time fracture criterion will be introduced in 
section 4. Several solutions received utilizing the incubation time approach embedded into the 
finite element method (FEM) will be presented. An important feature of this approach is the 
necessity to introduce but one material parameter in addition to standard material strength 
parameters. This parameter – incubation time of brittle fracture has an explicit physical 
meaning and can rather easily be evaluated experimentally. 
 The last group of approaches that can be utilized in order to predict crack initiation and 
propagation in dynamic conditions are criteria based on equations of state for material 
(ex. [38]) or equations of state for a cohesive zone (ex. [39,42]), placed on the crack path or 
equations for interaction between discrete particles representing the material (ex. [40]). When 
such equations of state are introduced, the fracture criterion is received as critical separation 
or critical crack opening, etc. A common disadvantage of this approach is the necessity to 
introduce and identify a big number (in some cases up to 15) of material parameters that often 
have no explicit physical meaning and comprehensible experimental technique to evaluate. In 
most cases, the parameters are evaluated by fitting theoretical prediction or numerical 
realization to experimental observations. As a result, in most cases, the received model is only 
applicable for simulation of the experimental conditions used for parameter identification. For 
many of these methods sensitivity to discretization, size is also a significant problem.  
 Here one can also mention different variations of phase-field models (PFM's) (see 
ex. [41]). PFM's are coupling regularized variational formulation of fracture condition and 
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material damage models. Although this approach, being the direct generalization of Griffith's 
brittle fracture theory is properly physically reasoned, the problem of parameter identification 
is greatly limiting the predictive ability of the solutions. 
 
3. Numerical techniques for dynamic cracks 
As discussed in the previous section for simulations of dynamic crack propagation the utilized 
fracture condition is of major significance. The numerical scheme used for integration of 
media equations of motion is phenomenologically not that much important and mainly affects 
the computational cost to solution accuracy ratio. Different approaches can be more or less 
efficient and convenient for the creation of a new surface (i.e., crack propagation), but again, 
if applied correctly, utilizing different approaches sharing the same fracture criterion, should 
not lead to substantially different computational results.  
 One of the most widely used methods to solve equations of motion for solid media is 
the finite element method (FEM). FEM is also the most utilized method for simulations in 
wave mechanics, including dynamic fracture mechanics. FEM utilizing explicit or implicit 
time integration is often employed to solve linear (suitable for many problems implying 
quasibrittle fracture) problem of dynamic elasticity while nonlinearity is introduced by the 
change in the boundary following the execution of fracture criterion. Examples presented in 
the following sections of this paper were received utilizing commercial FEM software 
(ANSYS, ABAQUS, and LS-DYNA) with incubation time fracture criterion embedded into 
this software. In some cases, execution of the fracture criterion was controlled by external 
software while FEM software was only used to receive solution for displacement field on 
every time integration substep. 
 An interesting and very promising approach for both quasistatic and dynamic fracture 
mechanics is the extended finite element method (XFEM) (see ex. [43]) extension of FEM. 
XFEM, through the partition of unity concept, is locally enriching finite elements enabling a 
possibility to have either discontinuity on an interface cutting finite element or singularity 
inside. This extension provides a very simple instrument for crack propagation, leading to 
converging solutions without a necessity to modify mesh once the fracture geometry is 
changed. XFEM can also be utilized in combination with the spectral element method (SEM) 
(ex. [44]), giving a possibility to receive accurate solutions on a much coarser mesh. The 
concept of level-sets is also widely used to describe crack paths (see ex. [45]). 
 Many other methods, suitable for solving partial derivative equations (PDE's) of media 
motion or reformulations of these equations can be utilized for the simulation of dynamic 
crack propagation. Peridynamics (see ex. [46]), reformulating PDE's of classical elasticity as 
integral equations are particularly suitable for fracture mechanics and dynamic fracture 
mechanics removing difficulties connected with derivatives on boundaries and singularities. 
Different discrete element methods (DEM's) including molecular dynamics (MD) in some 
cases can provide a deeper understanding of physical mechanisms underlying dynamic 
fracture at the crack tip (see ex. [47]). Due to computational cost limitations on dimensions of 
a domain that can be simulated, it is also possible to couple DEM, solving the problem at the 
vicinity of the crack tip with other approaches (FEM, SEM, XFEM, etc.) providing a solution 
elsewhere within the solution domain (see ex. [48]). 
 
4. Incubation time fracture criterion 
Incubation time criterion for brittle fracture at a point x at time t reads (see ex. [29,30]): 
1
𝜏𝜏 ∫

1
𝑑𝑑

𝑡𝑡
𝑡𝑡−𝜏𝜏 ∫ 𝜎𝜎(𝑥𝑥′, 𝑡𝑡′)𝑑𝑑𝑥𝑥′𝑑𝑑𝑡𝑡′ ≥ 𝜎𝜎𝑐𝑐

𝑥𝑥
𝑥𝑥−𝑑𝑑 , (1) 

where τ is the incubation time of a brittle fracture process – a parameter characterizing the 
response of fractured material microstructure to changing transient force field. τ is constant 
for a given material at a given scale level. Its value does not depend on the problem geometry, 
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neither it depends on the way a load is applied nor on the shape of a load pulse and its 
amplitude. d is the characteristic size of the fracture process zone. Its value is constant for a 
given material at a given scale level. σ is normal stress at a point, changing with time and σc 
is its critical value (ultimate stress or critical tensile stress evaluated in quasistatic conditions). 
x' and t' are the local coordinate and time.  

Assuming  
𝑑𝑑 = 2

𝜋𝜋
𝐾𝐾Ι𝐶𝐶
2

𝜎𝜎𝐶𝐶
2 , (2) 

with KIC being the critical value of stress intensity factor for mode I loading (mode I fracture 
toughness), measured in quasistatic experimental conditions, it can easily be shown that 
within the framework of linear elastic fracture mechanics for the case of fracture initiation in 
the tip of an existing crack, (1) is equivalent to: 
1
𝜏𝜏 ∫ 𝐾𝐾Ι(𝑡𝑡′)𝑑𝑑𝑡𝑡′ ≥ 𝐾𝐾Ι𝐶𝐶

𝑡𝑡
𝑡𝑡−𝜏𝜏 . (3) 

Condition (2) naturally arises from the requirement that (1) is equivalent to Irwin's 
fracture criterion (𝐾𝐾Ι ≥ 𝐾𝐾ΙC), in quasistatic conditions or, which is the same, for 𝑡𝑡 → ∞. In 
other words, such a choice of d guarantees that for slow loading rates and, hence, times to 
fracture that are significantly greater than τ, condition (3) for crack initiation gives the same 
predictions as Irwin's criterion of a critical stress intensity factor. In the case when the stress 
field is not singular in the vicinity of point x (locally intact material) and under the condition 
of quasistatic load applied to the media, condition (1) is reduced to a critical tensile stress 
fracture criterion (𝜎𝜎 ≥ 𝜎𝜎𝐶𝐶).  
 Within the framework of the incubation time approach, linear size d, formally 
introduced as a requirement that condition (1) coincides with critical stress intensity factor 
criterion for quasistatic situation, has a much deeper physical meaning. d is giving a minimal 
rapture size that can be called fracture on a chosen scale level. Thus, d is giving a dimension 
for scale level – any defect with a linear size substantially smaller than d is not treated as 
fracture and material is locally intact. This idea is of special importance for numerical 
analysis: the choice of rupture surface increment once fracture condition is executed 
somewhere in the body is a common difficulty for numerical schemes employing time 
discretization. For many of the known numerical approaches in dynamic fracture, the choice 
of fracture increment per time step is known to significantly affect the received fracture 
evolution history. Adopting linear size d to be the unit fracture length (on a given scale level) 
removes this difficulty – once fracture condition is executed somewhere in the body, a new 
surface with a length of d should appear in the vicinity of this point. In the following sections, 
it will be demonstrated that the described approach is capable of very precise description and 
prediction of dynamic crack evolution in quasibrittle materials. The very important feature of 
this approach, distinguishing that from the majority of other known approaches in dynamic 
fracture, is the necessity to introduce a single parameter in addition to standard traditionally 
utilized material strength parameters – incubation time τ. The value τ can be rather easily 
evaluated experimentally (see ex. [29,30]). A very limited set of material properties- elastic 
properties (Young's modulus, Poisson's ratio, density), quasistatic strength properties 
(ultimate strength, critical stress intensity factor), and dynamic strength property (incubation 
time of brittle fracture) is providing a possibility to simulate all the variety of known 
experimental results for quasibrittle dynamic fracture.  
 This approach was embedded into commercial FEM computational software (ANSYS, 
ABAQUS, and LS-DYNA). This paper will present results of simulations in comparison to 
experimental measurements for evolution (initiation, propagation, arrest, reinitiation) of 
preexisting cracks as well as the results of incubation time approach simulations in 
comparison to experiments for fracture of initially intact media subjected to high-energy high-
velocity dynamic impact.  
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5. Initiation, propagation, arrest, and reinitiation of dynamic cracks 
In [50] the described above approach was applied to simulate conditions of classical for 
fracture dynamics experiments of Ravi-Chandar and Knauss [11]. In these experiments 
cracked samples made of Homolite-100 (transparent organic glass) were subjected to the 
pulsed dynamic load applied at the existing crack faces. The load was created by the magnetic 
field created between two flat conductors inserted into the crack. A sketch of the experimental 
geometry is given in Fig. 1.  
 

  
Fig. 1. Experimental geometry used in [11] 

 
Utilized electromagnetic loading gives the pressure that is uniformly distributed over 

the crack faces with an intensity that is directly proportional to the current in the circuit. The 
current in the circuit can easily be measured in the experiment. The temporal shape of the 
loading pulse, created in [11] is presented in Fig. 2. 
 

 
Fig. 2. Temporal shape of the load created in [11] 

 
Such a load shape (two consequently following pulses) results in the initiation of 

fracture in the tip of the existing crack followed by crack propagation (at almost constant 
velocity), crack arrest, and reinitiation when the second pulse is coming into the play. 
Experimentally measured crack extension history is given in Fig. 3. 
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Fig. 3. Crack extension history observed in [11] 

 
Utilizing the described above incubation time criterion for brittle fracture, embedded 

into ANSYS FEM [51] commercial software, the exact conditions of experiments [11] were 
simulated. Material (Homolite-100) properties used for simulations are given in Table 1. 
 
Table 1. Homolite-100 properties used for numerical simulations 

Density ρ, kg/m3 1230 
Young's modulus E, MPa 3900 

Poisson's ratio ν 0.35 
Critical stress 

intensity factor 
KIC, 𝑀𝑀𝑀𝑀𝑀𝑀√𝑚𝑚 0.48 

Ultimate tensile 
strength 

σC, MPa 48 

Incubation time of 
brittle fracture 

τ, µs 9* 

*Value for incubation time for Homolite-100 measured in [52] 
 
 Standard properties for Homolite-100 presented in Table 1 are taken from the official 
material datasheet. Value for an incubation time of brittle fracture for Homiliote-100 was 
experimentally evaluated in [52] and was not anyhow fitted within the presented simulations. 
Due to the problem symmetry (and according to experimental observations), fracture 
propagates along with the initial crack continuation. Thus, the execution of condition (1) was 
only controlled along this line. Once the fracture condition is executed in the tip of the crack, 
the crack length is advanced by d (calculated according to (2), utilizing the node release 
technique. The model was checked for convergence. It should be highlighted, that the model 
contains no "tuning" parameters – real experimental conditions (including geometry and 
boundary conditions) were used for simulations and all of the utilized material parameters are 
presented in Table 1. 
 Figure 4 presents the received crack extension history in comparison to experimental 
measurements (Fig. 3). 
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Fig. 4. Calculated crack extension history compared to experimental data from [11] 

 
 As follows from the presented computational results, the utilized numerical model is 
capable of very precise prediction of crack initiation, growth, arrest, and reinitiation. As 
shown in multiple publications (see ex. [33]), the developed approach provides the correct 
prediction of crack evolution in different materials under various loading conditions.  
 
6. Stress intensity factor – crack speed relation 
Straightforward analysis based on LEFM implies direct relation between the crack tip stress 
intensity factor (or, which is the same, energy flux into the crack tip) and the crack 
propagation velocity.  
 In [11] authors also had a possibility to measure stress intensity factor history utilizing 
the optical method. Figure 5 gives a history of the stress intensity factor in the crack tip 
measured in the experiment modeled in the previous section. 

 

 
Fig. 5. Stress intensity factor history observed in [11] 

 
As follows from Fig. 3, giving crack extension history and Fig. 5, giving the 

corresponding stress intensity factor history, the crack, after its first initiation and up to the 
moment of arrest, is moving with constant velocity whilst the magnitude of the stress intensity 
factor is changing significantly (from 0.6 𝑀𝑀𝑀𝑀𝑀𝑀√𝑚𝑚 to 0.4 𝑀𝑀𝑀𝑀𝑀𝑀√𝑚𝑚). Exactly the same 
behavior is received in the presented above numerical simulation – the crack is propagating at 
a constant velocity (that is sometimes called ballistic behavior) while the value of the stress 
intensity factor is vastly changing. A similar effect is observed in a number of experimental 
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works (see ex. [53]) – dynamic cracks propagate at a constant velocity, exhibiting no relation 
between stress intensity factor at the crack tip and crack velocity.  
 Obviously, this behavior contradicts mentioned above direct correlation between the 
stress intensity factor and the crack speed. At the same time, in other experiments (see ex. 
[54,55]) authors explicitly observe crack velocity that is in direct relation to the instantaneous 
value of the stress intensity factor. The presented above numerical approach was applied [56] 
to simulate the conditions of experiments from [54] in order to see what prediction the 
incubation time fracture criterion will give in experimental conditions leading to crack speed 
being directly related to the stress intensity factor value. In these experiments [54] cracked 
sample was loaded by slow quasistatic load (see Fig. 6) up to the moment of crack initiation. 
Due to experimental geometry, crack extension results in a significant increase in the crack tip 
stress intensity factor.  
 

 
Fig. 6. Experimental geometry used in [54] 

 
All of the experimental conditions from [54], including experimental geometry and 

boundary conditions, were used for the development of the numerical model. The sample was 
made of PMMA with the properties presented in Table 2.  
 
Table 2. PMMA properties used for numerical simulations 

Density ρ, kg/m3 1200 
Young's modulus E, MPa 3500 

Poisson's ratio ν 0.32 
Critical stress 

intensity factor 
KIC, 𝑀𝑀𝑀𝑀𝑀𝑀√𝑚𝑚 1.1 

Ultimate tensile 
strength 

σC, MPa 60 

Incubation time of 
brittle fracture 

τ, µs 1.5* 

*Value for incubation time for PMMA measured in [53] 
 

Figure 7 gives a comparison of experimentally measured and numerically evaluated 
crack velocity plotted against the crack extension.  
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Fig. 7. Experimental geometry used in [54] 

 
As follows from Fig.7 the utilized numerical approach is giving a prediction of crack 

velocity as a function of crack extension (with the crack extension being directly proportional 
to stress intensity factor) that is precisely following the experimental measurement. The 
presented data also means that within the framework of the utilized numerical approach in the 
simulated experimental conditions there is a connection between the crack velocity and the 
stress intensity factor.  
 Another important physical phenomenon is associated with the maximum possible 
crack velocity. Based on the assumptions of LEFM, for mode I crack, the maximum possible 
crack speed is limited by the Rayleigh wave speed [57-59]. The reason for that is the 
limitation on energy transport speed, which, close to solid body boundary, is mostly carried 
out by Rayleigh waves (see ex. [60]). At the same time, experimentally observed maximum 
crack speeds rarely exceed 0.7 of that of the Rayleigh wave (see ex. [61]). Crack bifurcation 
and crack propagation mode change, resulting in the appearance of crack path fractality is 
believed to be the reason for that (see ex. [62]). The incubation time approach can also be 
utilized in order to investigate the phenomenon.  
 
7. Fracture in a tip of a crack vs fracture of intact media  
Traditionally, starting from quasistatic fracture mechanics approaches predicting fracture of 
initially intact media (i.e., without significant stress concentrators) and approaches predicting 
fracture in the tip of an existing macroscopic crack were developing independently. The 
approaches predicting fracture of nominally defectless media are usually based on the critical 
value of normal stress, whilst fracture in the crack tip is traditionally assessed based on 
Griffith [63] - Irwine [64] approach of critical stress intensity factor. Even though physical 
mechanisms driving fracture in the two cases are obviously the same (as fracture of initially 
intact media is initiated on microscopic defects, forming local stress concentration), fracture 
mechanics for bodies with stress concentrators and approaches to fracture in the case of 
bodies without macroscopic cracks are still existing and developing independently. The same, 
to a large extent, is true referring to the simulation of dynamic fracture. 
 At the same time, since many decades ago there had existed an approach that is capable 
of predicting both the fracture of bodies without stress concentration and fracture at a tip of a 
macroscopic crack. The approach is named after Heinz Neuber [65,66] and Valentin 
Novozhilov [67]. The main idea of the approach consists in the assessment of integral force 

Numerical simulations of dynamic fracture. Crack propagation and fracture of initially intact media 463



field intensity at a vicinity of a studied point rather than the value of force field intensity at the 
point itself. Following this idea, fracture criterion for the quasistatic case can be derived as: 
∫ 𝜎𝜎(𝑥𝑥′)𝑑𝑑𝑥𝑥′ ≥ 𝜎𝜎𝑐𝑐𝑑𝑑
𝑥𝑥
𝑥𝑥−𝑑𝑑 , (4) 

with σc being the ultimate stress, x being the point where the fracture is assessed, σ(x) giving 
the local intensity of the normal stress field, and d giving a linear size of a domain 
surrounding the point x. It is easy to show (see ex. [29]) that should x be the crack tip and 
should square root singularity control the stress field surrounding this crack tip (i.e., should 
the stress field be KI dominated), (4) is equivalent to Griffith-Irwine critical stress intensity 
factor fracture criterion (𝐾𝐾Ι ≤ 𝐾𝐾ΙC) [63,64] if d is chosen such that 𝑑𝑑 = 2

𝜋𝜋
𝐾𝐾Ι𝐶𝐶
2

𝜎𝜎𝐶𝐶
2 , with KIC being 

the critical stress intensity factor value. It is also obvious that if the stress field is not changing 
significantly within {x,x+d}, then (1) is equivalent to the critical normal stress approach 
(𝜎𝜎 ≤ 𝜎𝜎𝐶𝐶). In other words, (4) is completely equivalent to the critical normal stress criterion for 
points without stress singularity and completely equivalent to the Irwine critical stress 
intensity factor criterion in the case of square root singular crack tip field. For intermediate 
situations (ex. for singular fields with non-square root singularities – for example for angular 
notches or for strongly gradient stress fields) (4) will also predict material strength. For 
example, in [37] Neuber-Novozhilov criterion is utilized to predict fracture and its direction at 
a tip of inclined crack subjected to the combination of compressive and shear loading.  
 Utilization of the Neuber-Novozhilov approach gives a possibility to successfully 
predict both the fracture at the tip of a crack and the fracture at a point without stress 
singularity within the framework of a unified approach. This possibility is of particular 
importance for numerical approaches – in order to assess fracture, there is no need to 
distinguish between points with stress singularity and points without singularity – the same 
fracture criterion can be used for any point within a body.  
 Referring to fracture in dynamic situation, the incubation time fracture criterion 
introduced by Petrov and Morozov (1) is the generalization of the Neuber-Novozhilov 
approach for dynamic cases. This paper will present several examples of (1) being utilized as 
fracture conditions embedded into FEM computational scheme to simulate fracture evolution 
at initially intact media. Dynamic fracture of initially intact media is usually caused by high-
velocity contact interaction between two or more bodies. Development of fracture zone is in 
most cases caused either by intensive shock waves close to contact surface or by compression 
waves reflected from free boundaries and transformed into tension waved (that is usually 
referred to as spallation). 
 The overwhelming majority of known numerical approaches for simulation of fracture 
evolution in initially intact media are based on the introduction of rather complex equations of 
state for material (ex. [68]) or introduction of complex cohesive law controlling the separation 
between discrete subdomains on the body (ex. [69,70]). The biggest disadvantage of both the 
first group of approaches (ex. Johnson-Cook model, Johnson-Holmquist model, Johnson-
Holmquist-2 model, etc.) and the second group of approaches (discrete element method, 
particle dynamics, peridynamics, etc.) is the necessity to introduce and identify a big number 
(in some cases up to 15) of material parameters that often have to explicit physical meaning 
and comprehensible experimental technique to evaluate. In most cases, the parameters are 
evaluated by fitting theoretical prediction or numerical realization to experimental 
observations. As a result, in most cases, the received model is only applicable for simulation 
of the experimental conditions used for parameter identification. For many of these methods 
sensitivity to discretization, size is also a significant problem. The central issue, 
distinguishing dynamic fracture processes from the fracture in the quasistatic situation is the 
transport of energy to and from the fracture zone. For intact media, this energy is transported 
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within a solid body primarily by bulk waves, whilst close to boundaries, cracks, interfaces, 
etc., this energy is mostly transferred taking the use of Rayleigh waves [60]. 
 Unlike the majority of other approaches, in order to utilize the Petrov-Morozov 
incubation time approach (2), it is necessary to introduce a single material parameter in 
addition to standard material strength parameters. This parameter – incubation time of brittle 
fracture has an explicit physical meaning and can rather easily be evaluated experimentally 
(see ex. [30]). 
 
8. Numerical implementation for arbitrary fracture 
The finite element method (FEM) [51] is utilized to solve the linear elastic problem for the 
propagation of waves within fractured solid media. Once fracture criterion (1) is executed 
somewhere within the body, the fracture should happen and a new surface should appear. The 
traditional method to create a new surface in FEM is associated with node separation 
techniques. This approach is convenient in many cases. However, it is associated with rather 
time-consuming procedures of remeshing and recalculation of displacements, strains, and 
velocities for the updated mesh. To achieve accurate integration in (1), it is necessary to use 
small time steps. Having that in mind node separation technique does not look to be the best 
solution. In the method employed in this study, the finite elements representing the fractured 
media initially have no common nodes. Before the fracture instant, the degrees of freedom of 
nodes located at the same position are coupled (Fig. 8). In this case, the FEM solution of the 
problem coincides with that for the elements sharing common nodes. If the fracture condition 
is executed in the corresponding node, the limitation on the degrees of freedom is removed 
and a new surface is formed. The size of each element is exactly equal to the value of d 
(𝑑𝑑 = 2

𝜋𝜋
𝐾𝐾Ι𝐶𝐶
2

𝜎𝜎𝐶𝐶
2 ). Such a choice of the finite element size is ensuring that once the fracture 

condition is executed somewhere in the body, the created rapture size will be equal to d (see 
section 4 for discussion of fracture increment size once the fracture condition is executed). 
 Such a choice of element size is also providing a possibility to rewrite (1) as: 
1
𝜏𝜏 ∫ 𝜎𝜎(𝑡𝑡′)𝑑𝑑𝑡𝑡′ ≥ 𝜎𝜎𝑐𝑐

𝑡𝑡
𝑡𝑡−𝜏𝜏 , (5) 

with i assuming values 1 and 2. Repeating indices do not dictate summation in this case. 
Spatial integration is removed because the stress in the respective direction calculated by 
FEM software is already giving a mean stress value over the interval equal to d (since d is the 
element size being used). If (5) is executed for σ11 and σ22 then restrictions on displacements 
of nodes 1,2,3 and 4 on Fig. 8 are removed. If (5) is executed for σ11, two new couple sets 
consisting of nodes 1,2, and 3,4 are created. If (5) is executed for σ22, new couple sets are 
created for nodes 1,3, and 2,4. For later times condition (5) in the applicable direction is 
checked for the newly created couple sets separately. Contact between fragments detached 
from the main body can be simulated or the effect of these fragments on the later fracture 
evolution can be neglected. 
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Fig. 8. Finite element model with elements having no common nodes 

 
9. Impact crater formation 
The presented above approach was applied to simulate conditions of SMART-1 satellite 
impacting the surface of the Moon. Year 2006 European Space Agency (ESA) deliberately 
directed SMART-1 satellite to impact the surface of the Moon [71,72]. The main reason was 
to study the cloud of dust and debris created by the impact, but the dimensions of the created 
imprint (crater) were also measured. The contact of the satellite with the lunar surface took 
place at a velocity of about 2000 km/s; the satellite had a shape close to cubic with a 
characteristic size of ~1 m and a mass of 366 kg. The observed defect (crater) formed on the 
Moon's surface as a result of the impact was about 6–10 m in diameter and 3 m deep. The 
purpose of the presented investigation was to compare the actual sizes of the created crater 
with the fracture dimensions obtained in simulations of the impact by the FEM scheme 
incorporating the fracture incubation time criterion. 
 Properties for the Moon material were taken to be equal to the properties of earth basalt 
(see Table 3). 
 
Table 3. Moon material properties used for numerical simulations 

Density ρ, kg/m3 2850 
Young's modulus E, GPa 60 

Poisson's ratio ν 0.25 
Critical stress 

intensity factor 
KIC, 𝑀𝑀𝑀𝑀𝑀𝑀√𝑚𝑚 2.94 

Ultimate tensile 
strength 

σC, MPa 10.5 

Incubation time of 
brittle fracture 

τ, µs 80* 

*Value for incubation time for earth basalt from [49] 
 
 Value for an incubation time of brittle fracture for the material presenting the Moon was 
not anyhow fitted within the presented simulations. The rest of the material properties are 
standard handbook properties for basalt.  
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 Contact interaction was simulated for a cylinder having 1 m in diameter and 1 m in 
height impacting half-space at a velocity of 2000 m/s. The cylinder material density was 
chosen such that the projectile's total mass is 366 kg. Equations of dynamic linear elasticity 
were solved utilizing ANSYS [51] commercial FEM software. Execution of condition (5) at 
all of the nodes representing half-space was controlled by ANSYS ADPL subroutine.  
 Figure 9 highlights nodes of the material representing the Moon for which fracture 
criterion (5) was executed during simulation.  
 

 
Fig. 9. Nodes representing the Moon where fracture criterion was executed 

 
Thus, it is possible to estimate the dimensions of the imprint (crater) formed as a result 

of the SMART-1 impact on the Moon's surface. The received damaged zone is about 10 m in 
diameter and approximately 3 m deep. The region of complete fragmentation of the material 
can be estimated to be 7-10 m in diameter and 3 m deep. These results perfectly coincide with 
the dimensions of the crater as estimated by the ESA [71, 72].  
 
10. Ballistic impact  
In [31] ballistic impacts of PMMA plates of several different thicknesses were studied 
experimentally and numerically. As a result of this study, it was clearly demonstrated that the 
incubation time approach employed to simulate 3D problem of high-speed contact interaction 
between an impactor and a plate of quasibrittle material can robustly predict both the ballistic 
limit and residual impactor velocity for initial impactor velocities above the ballistic limit. 
Here the main results of this study will be presented. 
 Experimental studies were conducted utilizing a light gas gun capable of accelerating 
cylindrical impactors made of steel to various velocities. Steel cylinders were normally 
impacting PMMA plates of three different thicknesses. High-speed photography was 
employed to register the initial (prior to contact with PMMA plate) and residual velocity of 
the impactor. As a result of the experimental study, residual velocity was measured as a 
function of initial velocity for the three studied plate thicknesses – 4mm, 6mm, and 10mm. 
 The exact conditions of this experiment were simulated utilizing LS-DYNA FEM 
commercial software with embedded incubation time fracture criterion. In this case, the full 
3D problem was solved. Element death technique was utilized in order to simulate fracture 
once fracture criterion is executed at some location within the PMMA sample. Figure 10 
gives the initial problem geometry and FEM mesh.  
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Fig. 10. Problem geometry (6mm thick PMMA plate) and FE mesh 

 
Material properties utilized for simulation are given in Table 4. 

 
Table 4. PMMA properties used for numerical simulations 

Density ρ, kg/m3 1180 
Young's modulus E, MPa 3300 

Poisson's ratio ν 0.35 
Critical stress 

intensity factor 
KIC, 𝑀𝑀𝑀𝑀𝑀𝑀√𝑚𝑚 1.7 

Ultimate tensile 
strength 

σC, MPa 72 

Incubation time of 
brittle fracture 

τ, µs 1* 

*Value for incubation time for PMMA measured in [24] 
 

Properties for impactors were taken to be equal to the ones typical for steel. Figure 11 
gives the received numerical predictions of residual impactor velocities as a function of initial 
impactor velocity.  
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Fig. 11. Residual impactor velocities as a function of initial impactor velocity for the three 

experimentally tested PMMA plate thicknesses. d) gives the same dependency for a plate with 
5mm thickness [31] 

 
Figure 12 shows experimental and numerical fracture patterns for three different initial 

velocities for a 10mm thick PMMA plate.  
A very close coincidence between the experimental measurements and numerical 

simulations utilizing the incubation time fracture criterion is the indication of the applicability 
of the presented approach for simulation of high-velocity interaction between impactors and 
quasibrittle targets. Once again it should be noted that the utilized model contains no "tuning" 
parameters. The model is using only experimental geometry, initial and boundary conditions, 
and material properties given in Table 4.  
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Fig. 12. Experimental and numerical fracture patterns for 10mm PMMA plates and three 

different initial impactor velocities [31] 
 
11. Conclusions 
The paper presented a review of available rupture criteria and numerical approaches for 
simulation of dynamic crack propagation and fracture of initially intact media. The incubation 
time approach for the prediction of quasibrittle dynamic fracture was discussed in better 
detail. Several examples of simulations including dynamic crack initiation, propagation, 
arrest, and reinitiation are presented. Examples of the incubation time approach utilized to 
simulate the evolution of brittle fracture in initially intact media were also presented. As 
vividly demonstrated, the incubation time approach, not incorporating any "tuning" 
parameters can reliably predict both the evolution of macroscopic cracks as well as the 
development of fracture zone in initially intact media loaded by high-energy impactors. 
Interconnection between crack velocity and stress intensity factor in the crack tip is discussed 
and results of simulations are presented. It is shown that the relation between the crack 
velocity and the stress intensity factor is not a material property, but also depends on 
experimental geometry, loading conditions, etc. 
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