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Abstract. The study is focussed on the near-critical regimes of the moving load on
a coated elastic half-space. The material properties of the coating are assumed to be
depending on the vertical coordinate. The analysis relies on the hyperbolic-elliptic for-
mulation for the Rayleigh wave induced by prescribed surface loading, containing an
elliptic equation for the elastic potential governing its decay over the interior, and a sin-
gularly perturbed wave equation on the interface between the layer and the substrate.
This scalar formulation allows significant simplifications, including in particular, clas-
sification of the near-resonant regimes. The method of fictitious absorption is then used
in order to incorporate the effect of poles, associated with the radiation of energy from
the moving source. Finally, numerical illustrations of results for several types of vertical
inhomogeneity are presented.
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1 INTRODUCTION

Moving load problems on elastic structures have been studied for around a century

now, see e.g. [12], [25] and possess important industrial applications, in particular, in

high-speed train operation [4]. Solution for steady-state regime of a moving load on

an elastic half-space has been first presented in [6], see also [14]. Moving load on a

coated half-space has been seemingly first considered by [2]. More realistic modelling

motivates development of studies oriented to dynamics of multi-layered and vertically

inhomogeneous half-space, see e.g. [15] and [22].

At the same time, sophisticated structure of the exact solution stimulates develop-

ment of effective approximations. In view of the well-known fact of the Rayleigh wave

speed being the critical speed of the moving load, the near-resonant formulation for sur-

face wave field, allowing explicit solutions seems a prospective approach. The current

work is based on the long-wave asymptotic formulation presented in [7], which has been

applied to problems on a moving load for elastic half-space [17, 10, 8, 26], see also [18]

for a more systematic exposition of the methodology of hyperbolic-elliptic models for

surface waves. Recent advances of the approach include in particular extensions incor-

porating the effects of anisotropy [13] and pre-stress [21], composite models for elastic

layers [9], as well as development of seismic meta-surfaces [29] and the second-order

refined model [30].

The described asymptotic model [18] is focused on the contribution of the Rayleigh

wave to the overall dynamic response. It is derived as a slow-time near-resonant per-

turbation of the self-similar solution by [5] and hence allows reduction of the vector

problem of elasticity to a scalar problem for the Laplace equation in respect of the lon-

gitudinal elastic potential, with the boundary condition on the surface presented in the

form of the forced wave equation. In case of the coated half-space the presence of

the layer is reflected by the appropriate pseudo-differential operator, thus, the boundary

condition describing the near-surface dynamics is a singularly perturbed wave equation,

see e.g. [7].

The focus of the current contribution is on the near-resonant steady-state regimes of

a moving line load on a half-space coated by a vertically inhomogeneous thin coating.

The corresponding extension of the hyperbolic-elliptic model has been recently sug-

gested in [24]. The study of a singularly perturbed hyperbolic equation at the interface

allows classification of the regimes of the moving load, pointing out typical behaviours

depending on the speed of the load and the combinations of material parameters.

The paper is organized as follows. The problem is formulated in Section 2. The ana-

lytic treatment of the pseudo-differential equation on the interface between the layer and

the substrate and classification of regimes of the moving load is carried out in Section

3. Finally, numerical illustrations of the results are presented in Section 4.
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2 FORMULATION OF THE PROBLEM

Consider a linearly isotropic, elastic half-space over the domain −∞ < x1, x2 <∞
and x3 ≥ 0, coated by a thin layer of thickness h described by −∞ < x1, x2 < ∞ and

−h ≤ x3 ≤ 0, see Fig. 1.

Figure 1: Moving load on a coated elastic half-space.

The properties of the coating are assumed to be dependent on the transverse variable

x3, so that

λc = λ(x3), μc = μ(x3), ρc = ρ(x3) (1)

denote the Lamé elastic parameters and volume mass density, respectively. The sub-

strate is assumed homogeneous, with the associated material parameters given by λs,
μs and ρs. The governing equations of motion and the constitutive relations of linear

isotropic elasticity are conventionally written as

σqij,j = ρqu
q
i,tt, σqij = λqu

q
k,k + μq

(
uqi,j + u

q
j,i

)
, (2)

where σqij and uqi (i, j = 1, 2, 3) are the Cauchy stress and displacement components

of the coating and substrate (q = c, s), comma indicates differentiation with respect to

appropriate spatial or time variable, and the Einstein summation convention is adopted.

Here we restrict the consideration to plane-strain formulation, for which uq2 = 0 and the

components uq1 = u
q
1(x1, x3, t) and uq3 = u

q
3(x1, x3, t) are independent of x2.

The loading on the surface of the coating is prescribed in the form of a line vertical

force P , moving at a constant speed c, hence the boundary conditions are written as

σc31 = 0, σc33 = P0 δ (x1 − ct) , at x3 = −h, (3)

see Fig.1. Perfect bonding on the interface is assumed, giving (m = 1, 3)

usm = ucm, σs3m = σc3m, at x3 = 0. (4)
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Below, the long-wave assumption is adopted, i.e.

ε =
h

L
� 1, (5)

where L is the typical wave length.

We consider the steady-state problems focusing on the near-resonant regimes, when

the speed of the moving load is close to that of the resonant Rayleigh wave cR in the

substrate, namely ∣∣∣∣ ccR − 1

∣∣∣∣ � 1. (6)

Then, the contribution of the Rayleigh wave to the overall dynamic response is dominant

compared to that of body waves, hence, the hyperbolic-elliptic model for the Rayleigh

wave is applicable.

The corresponding asymptotic formulation for a vertically inhomogeneous coated

half-space has been recently proposed in [24], extending the previous results in [7].

Within this framework, efficient boundary conditions are derived by means of the asymp-

totic integration technique, see e.g. [11] and [19], then serving as a starting point for

slow-time perturbation procedure.

For the current problem, the proposed model for surface wave contains an elliptic

equation for the interior x3 > 0

∂2φ

∂x23
+ α2

R

∂2φ

∂x21
= 0, (7)

where φ is the longitudinal Lamé elastic potential in the substrate and

αR =

√
1− ρsc

2
R

λs + 2μs
. (8)

The boundary condition at x3 = 0 is given by a singularly perturbed 1D hyperbolic

equation

∂ 2φ

∂x21
− 1

c2R

∂ 2φ

∂t2
− bh

√
− ∂

2

∂x21

(
∂ 2φ

∂x21

)
= −1 + β2

R

2μB
P0 δ (x1 − ct) , (9)

where

B =
αR

βR

(
1− β2

R

)
+
βR
αR

(
1− α2

R

)
− 1 + β4

R, βR =

√
1− ρsc

2
R

μs
, (10)

and the constant b is given by

b =
(1− β2

R)

2μB

[
ρ̃ c2R (αR + βR)− βR γ̃

]
, (11)
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with the integral quantities accounting for vertical inhomogeneity

γ̃ =
4

h

0ˆ

−h

μc (λc + μc)

λc + 2μc
dx3, and ρ̃ =

1

h

0ˆ

−h

ρc dx3. (12)

It is worth noting that the pseudo-differential operator

√
− ∂

2

∂x21
is an essential feature

of the problem, associated with the dispersion of waves within the coating layer. More-

over, the sign of the coefficient b is associated with the sign of the group velocity in the

long-wave limit, see [28] for more detail.

Once the longitudinal potential φ is determined from the scalar formulation (7), (9),

the transverse potential ψ may be found as its harmonic conjugate, see e.g. [18], origi-

nating from [5]

ψ (x1, βRx3, t) =
2αR

1 + β2
R

φ∗ (x1, βRx3, t) , (13)

where the asterisk denotes the Hilbert transform.

Now, the boundary value problem (7), (9) may be rewritten in the moving coordinate

system (ξ, x3) = (x1 − ct, x3), hence the steady-state limit is governed by

∂2φ

∂x23
+ α2

R

∂2φ

∂ξ2
= 0, (14)

subject to

η
∂2φ

∂ξ2
− b h

√
− ∂2

∂ξ2

(
∂2φ

∂ξ2

)
= −1 + β2

R

2μB
P0 δ(ξ) at x3 = 0, (15)

where

η = 1− c2

c2R
.

3 ANALYSIS ON THE INTERFACE

Let us concentrate on the analysis of equation (15) on the interface x3 = 0. Note that

on setting h = 0 the problem formulation (14), (15) will reduce to that for an uncoated

elastic half-space which is the leading order Taylor expansion of the exact solution [6],

for more details see [18].

Another observation which immediately follows from (15) is the presence of two

small parameters, a geometric one, associated with the long-wave approximation, as

well as η corresponding to the near-resonant vicinity.
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Now, let us introduce the dimensionless coordinate ζ =
∣∣∣η
b

∣∣∣ ξ
h

along with a scaled

quantity

χ = − 2μB b h

(1 + β2
R)P0

∂2φ

∂ξ2
. (16)

Then, the equation (15) takes the form

sgn (b η) χ−
√
− ∂2

∂ζ2
(χ) = δ(ζ), (17)

The solution of the latter can be obtained by using the Fourier integral transform

χ =
1

2π

∞̂

−∞

eiωζ dω

sgn (b η)− |ω| . (18)

From (18) it may be observed that the analysis splits in two sub-cases, depending on the

value of sgn (b η).

3.1 SUB-CASE 1: NO POLES ON THE REAL AXE

Consider first the situation bη < 0, in which

χ =
1

2π

ˆ ∞

−∞

eiωζ dω

−1− |ω| = F (|ζ|) , (19)

where

F (x) =
1

π
[si(x) sin x+ Ci(x) cos x] , (20)

with si and Ci denoting the sine and cosine integral functions, respectively, i.e.

si(x) = −
∞̂

x

sin t

t
dt, Ci(x) = −

∞̂

x

cos t

t
dt,

see e.g. [1]. Note that this case occurs either in the the sub-Rayleigh regime (c < cR)
with local minimum of the phase velocity at the Rayleigh wave speed (b < 0), or in

the super-critical regime (c > cR) combined with local maximum of the phase velocity

(b > 0), for more detail see [7].
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3.2 SUB-CASE 2: POLES ON THE REAL AXE

The second sub-case bη > 0 of poles on the real axis of the integral (18) may be

treated using the limiting absorption principle, see e.g. [27, 16].

In case of the sub-critical regime (c < cR), when (b > 0), formula (18) yields

χ =
1

2π

ˆ ∞

−∞

eiωζ dω

1− |ω| = −2H (−ζ) sin ζ + F (|ζ|) , (21)

whereas in the case of the super-Rayleigh regime (c > cR) the solution becomes

χ = 2H (ζ) sin ζ + F (|ζ|) , (22)

with F defined in (20) and H(ζ) denoting the Heaviside function.

4 NUMERICAL RESULTS

In this section, the illustrations of the obtained results are presented. We consider the

dependence of the Young’s modulus Ec of the coating layer on the vertical coordinate

x3 of exponential form, see e. g. [22]

E(x3) = Ec e
β x3 , β =

1

h
ln

(
Es

Ec

)
, (23)

providing a smooth variation from the value Ec on the surface of the coating to the

Young’s modulus Es of the homogeneous substrate. In the computations below we

also take h = 1 and assume constant mass densities ρc = ρs = 1, and Poisson’s

ratios νc = νs = 0.25, with the sub-Rayleigh and super-Rayleigh regimes computed for

c = 0.9 cR, and c = 1.1 cR, respectively.

Consider first the case of a relatively hard coating layer, when Ec/Es = 10. The

associated graphs in Fig. 2 show the dependence of the quantity χ on the scaled moving

coordinate ζ . In this case, the constant b may be computed using (11), resulting in

b ≈ −1.32. In Fig. 2(a) the super-Rayleigh regime is depicted (η > 0), corresponding

to the case of no poles in (18), whereas Fig. 2(b) illustrates the sub-Rayleigh regime

(η < 0), clearly showing the effect of poles in (18) for positive ζ , i.e. radiation of energy

in front of the moving source.

2607



S. Althobaiti et al.

- -

χ

ζ

(a) η > 0.

- -
-
-

χ

ζ

(b) η < 0.

Figure 2: Dependence of the quantity χ on the moving coordinate ζ for the case of softening within the

layer (Ec/Es = 10).

The following Figs. 3 (a) and (b) illustrate another typical scenario, when the coating

layer is relatively soft compared to the substrate and stiffens gradually with depth, when

Ec/Es = 0.1. The calculation of the constant b according to (11) gives b ≈ 0.276. The

plots in Fig. 3(a) and 3(b) show the variation of the quantity χ on the moving coordinate

ζ . Now, the energy radiation behind the moving load is observed in the super-Rayleigh

regime in Fig. 3 (a).

- - -
-
-

χ

ζ

(a) η > 0.

- -

χ

ζ

(b) η < 0.

Figure 3: Dependence of the quantity χ on the moving coordinate ζ for the case of hardening within the

layer (Ec/Es = 0.1).

5 CONCLUSIONS

The steady-state problem for a moving line load on a half-space coated by a thin

vertically inhomogeneous layer has been analysed. The hyperbolic-elliptic formulation

for the Rayleigh wave field allowed an explicit solution, as well as a clear classification

of the regimes.

Further possible developments include addressing transient problems [17], general-

izations to coatings with more sophisticated mechanical properties, taking into account
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the effects of viscosity, curvature, long-wave high-frequency waves [20], as well as a

more general treatment of a vertically inhomogeneous half-space, see e.g. [3]. We also

mention potential applications for seismic metabarriers [23]
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