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Abstract. The problem of seismic protection from the main types of surface acoustic waves
and shear–pressure (SP) evanescent waves emanating from vicinity of an epicenter of an
earthquake is discussed. Herein, SP waves represent a kind of the evanescent waves arising at
critical angles of incident of bulk shear waves. The proposed seismic protection method utilizes
vertical trenches (vertical barriers) filled with the specially constructed granular metamaterials.
Some of nonlinear hyperelastic models along with nonlinear and inelastic models are analyzed for
applications using granular metamaterials in case of cyclic dynamic loadings that correspond to
arrival of the large intensity surface acoustic and evanescent waves. The main attention is paid to
arrival of the large intensity Rayleigh, Rayleigh–Lamb and SP waves, as the most frequent waves
and the most dangerous waves for engineering structures. Some of the new constitutive equations
for metamaterials exhibiting different elastic moduli at tension and compression phases are
proposed and discussed.

1. Introduction

Granular metamaterials used as filler for seismic barriers and seismic cushions are extensively
studied in various laboratories around the world [1–25]. For analyzing mechanical properties
of the discussed granular metamaterials at cyclic dynamic loadings, several methods are
proposed, including elastic, hyperelastic and hypoelastic equations of state [26–29], elastic-plastic
[1–3, 6, 7, 30], viscoelastic-plastic [19, 20], hydrodynamic equations of state [21, 22], etc. Herein,
various nonlinear hyperelastic equations of state are analyzed.

The problem of seismic protection from the main types of surface acoustic waves and shear–
pressure (SP) evanescent waves emanating from vicinity of the epicenter of an earthquake is
discussed. The proposed seismic protection method utilized vertical trenches (vertical barriers)
filled in with the specially constructed granular metamaterials. Herein, the following notation
is applied, the term vertical barrier in contrast to the horizontal barrier, is referred to a vertical
formation in the upper layers of the Earth crust. The typical vertical dimension for a vertical
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barrier is chosen as a quarter of the wavelength that should be reduced in the area behind the
barrier [31–33]. In practice, depth of the typical vertical barrier may vary from 4 to 25 m.
Another remark concerns the typical dimensions of the artificial pebbles used as fillings for the
barriers, according to [33,34] the recommended diameters lie in a range of 0.01–0.1 m, however,
for some seismic pads used in bridges, the diameters could be much larger, approaching 0.5–1 m,
see [35]. Some of the nonlinear hyperelastic models along with nonlinear and inelastic models
are analyzed for applications of the usage of granular metamaterials in case of cyclic dynamic
loadings that correspond to arrival of the large intensity surface acoustic and evanescent waves.
The main attention is paid to arrival of the large intensity Rayleigh, Rayleigh–Lamb and SP
waves, as the most frequent waves and most dangerous waves for the engineering structures.
Some of the new constitutive equations for metamaterials exhibiting different elastic moduli at
tension and compression phases are proposed and discussed.

2. Hyperelastic potentials

2.1. Equations of state

At the assumption of the infinitesimally small deformations, the stress–strain relation for the
hyperelastic material takes the form

σ = λ(Iε, IIε, IIIε)Iε I + 2µ(Iε, IIε, IIIε)ε, (1)

where I denotes the unit diagonal matrix; Lame’s λ and µ are functions of the strain (or stress)
invariants, that can be written in the following form

Iε ≡ tr(ε), IIε ≡
1

2

(
I2
ε
− ε · ·ε

)
, IIIε ≡ det(ε). (2)

Note that equation (1) ensures existence of the scalar potential, that will be introduced below
in (6). It will be assumed that the strain energy that relates to equation (1), ensures that the
condition of strong ellipticity of the corresponding elastic tensor is satisfied [26,30]. The assumed
strong ellipticity condition requires the following inequalities: µ > 0, 3λ+ 2µ > 0.

2.2. Equations of motion for the nonlinear media

Introducing Cauchy relation for the infinitesimal strain tensor and the displacement field [24]

ε = 1

2

(
∇u+∇u

t
)

(3)

and substituting equation of state (1) into (infinitesimal) equation of motion, yields

(λ+ 2µ)∇xdivxu− µ rotx rotx u+(∇xλ ) divxu+∇xµ
(
∇xu+∇xu

t
)
= ρü, (4)

where in view of (1)

∇xλ =
(

∂λ
∂Iε

∇xIε +
∂λ
∂IIε

∇xIIε +
∂λ

∂IIIε
∇xIIIε

)

. (5)

The gradient ∇xµ is defined similarly.
In addition to equation (1) for a hyperelastic material it is assumed the potential Ψ(Iε, IIε, IIIε)

exists, such that [27]

σ = ∇εΨ(Iε, IIε, IIIε). (6)

Accounting relations (2), the condition (6) can be rewritten as [36]

σ = ∂Ψ
∂Iε

I + ∂Ψ
∂IIε

(IεI − ε) + ∂Ψ
∂IIIε

(εε− Iεε+ IIεI) . (7)

Comparing equations (1) and (7) yields the following representation of Lame’s constants in terms
of the potential:

λ(Iε, IIε, IIIε) =
∂Ψ
∂Iε

I−1
ε + ∂Ψ

∂IIε
+ ∂Ψ

∂IIIε
IIεI

−1
ε , 2µ(Iε, IIε, IIIε) = −

∂Ψ
∂IIε

+ ∂Ψ
∂IIIε

(
ε−1

− Iε
)
. (8)
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Equations (8) impose some restrictions on behavior of the potential Ψ. In particular, since
Lame’s constants assumed to be continuous with respect to strain invariants, should be bounded
at Iε → 0 ε → 0, equations (8) yields

∂Ψ
∂Iε

= O(Iε), Iε → 0; ∂Ψ
∂IIIε

= O(Iε), Iε → 0; ∂Ψ
∂IIIε

= O(IIIε), IIIε → 0. (9)

At modeling of both statics and dynamics of granular materials, the hyperelastic constitutive
equations are applied quite often [24]. It should be noted that in most of these works a
concept of the multi-moduli media, actually, bi-modulus material, was applied [37] with a simple
hyperelastic potential that is homogeneous of degree 2 with respect to the infinitesimal strain
tensor

Ψ (Iε, II
∼

ε ) ≡ αI2ε + βII∼ε + γIε
√

II∼ε . (10)

However, the discussed potential unfortunately, becomes irregular at vanishing second invariant.
In the above equation, α, β, γ are the corresponding elastic material constants, independent of
the invariants Iε, II

∼

ε

II∼ε = −IIε + I2ε. (11)

Introducing parameter γ allows one to account dependence of material properties on sign of the
first invariant.

It should also be noted that with introduction [23] of the potential

Ψ (Iε, II
∼

ε ) = Ψ1(Iε, II
∼

ε )(1 − exp(−χ(II∼ε )); χ(II∼ε ) → 0, II∼ε → 0; χ(II∼ε ) → ∞, II∼ε → ∞, (12)

where Ψ1(Iε, II
∼

ε ) is an arbitrary potential, media with the dropdown (softening) diagrams can
be modeled.

3. Elastic models

3.1. General equations

Elastic models are described by the following equation of state

σ = λ(Iσ, IIσ, IIIσ)Iε I + 2µ(Iσ , IIσ, IIIσ)ε. (13)

Compare this equation for the general nonlinear elastic and isotropic media at the infinitesimal
deformations with equation (1) for the hyperelastic isotropic media.

3.2. Equations of motion

By analogy with equation (4), the linearized equation of motion can be represented in a form

λ+2µ
ρ

∇xdivxu−
µ
ρ
rotxrotxu+ 1

ρ

[
∇xλdivxu+∇xµ(∇xu+∇xu

T )
]

︸ ︷︷ ︸

lower order terms

+b = ü. (14)

Despite the apparent more generality, the elastic models are rarely used for modeling granular
materials. In [5, 17] problems related to the determination of velocities of acoustic waves in
a granular media modeled by a system of elastic balls, interacting by the Hertz theory, were
considered.

4. Hypoelastic models

4.1. General equations

According to Trusedell [27] the time derivative of the stress tensor σ̇ for a hypoelastic medium
is determined by the time derivative of the strain tensor ε̇. Assuming infinitesimal strains, the
constitutive relation for an isotropic hypoelastic material can be written in a form

σ̇ = λ(Iσ, IIσ, IIIσ)Iε̇ I + 2µ(Iσ, IIσ, IIIσ)ε̇. (15)
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where σ̇ = ∂σ
∂t
; λ and µ are functions of the corresponding invariants. Comparing the stress–

strain relations for hypoelastic (15) and elastic media (13) reveals, the only difference is in the
incremental form of the constitutive relation for the hypoelastic medium.

In theoretical works [26, 30] it was demonstrated that the special triggering mechanism can
be incorporated into equation of state (15) allowing to account different states for active and
unloading cases; thus, the general elastic-plastic behavior can be modeled within the hypoelastic
models.

4.2. Equations of motion

For a hypoelastic medium the equation of motion can be written in the form

divσ̇ + ρḃ = ρv̈, (16)

where ρ is the material density; it is assumed that ρ̇ = 0; ḃ is the field of body forces. Substituting
equation of state (15) into equation of motion (16) with account of the linearized Cauchy relations

ε̇ = 1

2

(
∇xv +∇xv

T
)

(17)

yields

λ+2µ
ρ

∇xdivxv −
µ
ρ
rotxrotxv +∇x

λ
ρ
divxv +∇x

µ
ρ
(∇xv +∇xv

T )
︸ ︷︷ ︸

lower order terms

+ḃ = v̈, (18)

where

∇x
λ
ρ
= 1

ρ

(
∂λ
∂Iσ

∇xIσ + ∂λ
∂IIσ

∇xIIσ + ∂λ
∂IIIσ

∇xIIIσ

)

. (19)

The gradient ∇xµ is defined analogously.
Despite the obvious generality, the hypoelastic media are rarely used for modeling granular

materials; in this regard it should be mentioned that the hypoelastic models were used for
analyzing propagation of the impact bulk wave fronts propagating in granular materials [38],
and the horizontally polarized surface acoustic waves; see [4].

5. Some inelastic models

5.1. General considerations

Along with various elastic models, there is a large number of works accounting inelastic behavior
of granular metamaterials. Apparently, one of the simplest inelastic models applicable for static
and quasi static modeling of granular metamaterials are based on various variants of the Mohr–
Coulomb and Drucker–Prager theories.

Remaining within a more traditional approach based on the Mohr–Coulomb plasticity model,
several approaches can be mentioned that are used for applications in the mechanics of granular
media; see for example [7]. The Mohr–Coulomb plasticity model is also applied to analyzing
known effects of arising and developing inelastic strain prior to the extensive flow of the
avalanches; see the experimental work [18].

5.2. Specific inelastic models for dynamics of granular metamaterials

For the considered inelastic models used for dynamics of granular metamaterials apparently, the
most widespread is the cam–clay (CC), the modified cam–clay (MCC) and the related models;
see [1–3], along with some more recent works [6,9]. For example, the ellipsoidal yield surface for
the MCC model can be written as [9]

f(p, qs, pc) ≡
1

β

(p

a
− 1

)2

+
( qs
Ma

)2

− 1 = 0, (20)



XXXV International Conference on Equations of State for Matter (ELBRUS 2020)
Journal of Physics: Conference Series 1787 (2021) 012041

IOP Publishing
doi:10.1088/1742-6596/1787/1/012041

5

where β is a dimensionless parameter specifying the ellipsoid shape: in a subcritical zone β = 1
(left side), in a supercritical zone β 6 1 (right side); the dimensionless parameter M , known as
the critical cone tangent, specifies ellipsoid dimension along qs-axis; a is the “central” point of
the ellipsoid, this parameter defines ellipsoid dimension along p-axis:

a =
pc

1 + β
, (21)

where pc is the current yield pressure value, note, that at β = 1 parameter a takes value pc/2.
Actually, parameter pc specifies evolution of the ellipsoidal surface.

6. Concluding remarks

As the presented review shows, the hyperelastic equations of state are presumably, the most
widespread for the use in characterization of the granular metamaterials behavior at the cyclic
dynamic loadings.

Meanwhile, equation of state (10) for hyperelastic models is not the only equation of state used
for characterization of the metamaterials having different moduli at the tension and compression
phases. At the uniaxial motions some other potentials may be used, e.g., Morse and Lennard–
Jones potentials; see [25].

The other problem of characterizing the analyzed granular metamaterials at acoustic wave
propagation, associates with formation of the shock waves formation at the interfaces between
tension and compression phases, where the bulk elastic moduli (and quite often shear moduli)
become different.

One more problem is the structural heterogeneity, which is deliberately created to increase
the energy dissipation by granular metamaterials. The corresponding phenomena are discussed
in [10,39,40].
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Theory (Encyclopedia of Physics vol III/1) ed Flügge S (Berlin, Heidelberg: Springer) pp 226–793
[30] Green A E 1956 Proc. Roy. Soc. London 234 46–59
[31] De Buhan P, Mangiavacchi R, Nova R, Pellegrini G and Salencon J 1989 Geotechnique 39 189–201
[32] Kuznetsov S V and Nafasov A E 2011 Adv. Acoust. Vib. 2011 150310
[33] Li S, Brun M, Djeran-Maigre I and Kuznetsov S 2019 Comput. Geotech. 109 69–81
[34] Brule S, Javelaud E H, Enoch S and Guenneau S 2014 Phys. Rev. Lett. 112 133901
[35] Infanti S, Papanikolas P and Castellano M G 2003 Seismic protection of the rion-antirion bridge Proc. of

8th World Seminar on Seismic Isolation, Energy Dissipation and Active Vibration Control of Structures

(Yerevan, Armenia)
[36] Ericksen J L 1960 Tensor fields Principles of Classical Mechanics and Field Theory (Encyclopedia of Physics
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